首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new quadrature broadside coupler is proposed, which employs an array of air-bridges to enhance directivity via its phase-equalization effect on the c-mode and /spl pi/-modes. The realization of air-bridges follows a standard MMIC fabrication process. An experimental chip fabricated on the 75-/spl mu/m GaAs substrate verifies the air-bridge effect and shows wideband characteristics of the coupling of 3.2/spl plusmn/0.4 dB, the insertion loss of 3.9/spl plusmn/0.4 dB, the output phase deviation from quadrature less than 6/spl deg/, and the isolation greater than 18 dB from 20 to 40 GHz.  相似文献   

2.
Compact all-fiber add-drop-multiplexer using fiber Bragg gratings   总被引:6,自引:0,他引:6  
A novel compact all-single-mode fiber add-drop-multiplexer for dense wavelength-division-multiplexing systems is demonstrated. The device consists of a polished fiber coupler with identical Bragg gratings within the interactive length. The multiplexer operation has been theoretically analyzed and calculated transmission and reflection spectra are given. A fabricated prototype device shows good performance, but suffers from a high-insertion loss of 7 dB, which is due to the long but imperfect coupling region and can be drastically reduced in principle. A return loss >30 dB, coupling efficiency=99%, and bandwidth at FWHM /spl Delta//spl lambda/=1.2 mn was measured.  相似文献   

3.
4.
A folding rearrangeable nonblocking 4/spl times/4 optical matrix switch was designed and fabricated on silicon-on-insulator wafer. To compress chip size, switch elements (SEs) were interconnected by total internal reflection (TIR) mirrors instead of conventional S-bends. For obtaining smooth interfaces, potassium hydroxide anisotropic chemical etching of silicon was utilized to make the matrix switch for the first time. The device has a compact size of 20/spl times/1.6 mm/sup 2/ and a fast response of 7.5 /spl mu/s. The power consumption of each 2/spl times/2 SE and the average excess loss per mirror were 145 mW and -1.1 dB, respectively. Low path dependence of /spl plusmn/0.7 dB in total excess loss was obtained because of the symmetry of propagation paths in this novel matrix switch.  相似文献   

5.
A very high degree of stability and the elimination of external support circuitry are requirements for many signal-processing applications of analog charge-coupled devices. A device that meets these requirements has been designed and fabricated. The device requires a single clock input signal and achieves a gain-temperature stability of /spl plusmn/0.015 dB over 0-50/spl deg/C and a gain-voltage stability of /spl plusmn/0.05 dB over a power-supply variation of /spl plusmn/10 percent. The NMOS device demonstrates the compatibility of digital, linear, and charge-coupled devices on a single chip.  相似文献   

6.
A novel integrated polarization converter based on ultra short bends is presented, which has a potential for low loss and small device size. A conversion value of 85% was experimentally measured with excess loss of 2.7 dB and overall dimensions of 975/spl times/83 /spl mu/m. Also 45% conversion was measured with extremely low excess loss of 0.4 dB for a device size of 760/spl times/86 /spl mu/m.  相似文献   

7.
The design and performance of two new miniature 360/spl deg/ continuous-phase-control monolithic microwave integrated circuits (MMICs) using the vector sum method are presented. Both are implemented using commercial 0.18-/spl mu/m CMOS process. The first phase shifter demonstrates all continuous phase and an insertion loss of 8 dB with a 37-dB dynamic range from 15 to 20 GHz. The chip size is 0.95 mm /spl times/ 0.76 mm. The second phase shifter can achieve all continuous phase and an insertion loss of 16.2 dB with a 38.8-dB dynamic range at the same frequency range. The chip size is 0.71 mm /spl times/ 0.82 mm. To the best of the authors' knowledge, these circuits are the first demonstration of microwave CMOS phase shifters using the vector sum method with the smallest chip size for all MMIC phase shifters with 360/spl deg/ phase-control range above 5 GHz reported to date.  相似文献   

8.
A novel fabrication process using a hot embossing technique has been developed for micromechanical passive alignment of polymer planar lightwave circuit (PLC) devices. With only one step of embossing, single-mode waveguide straight channels and micropedestals for passive aligning are simultaneously defined on a polymer thin film with an accuracy of /spl plusmn/0.5 /spl mu/m. This process reduces the steps for fabricating alignment structures. A fabricated polymer PLC chip and fibers are combined on a v-grooved silicon optical bench (SiOB) in a flip-chip manner. The process provides a coupling loss as low as 0.67 dB per coupling face and a cost-effective packaging solution for various polymer PLC devices.  相似文献   

9.
The 4/spl times/4, 1/spl times/2, and 1/spl times/4 semiconductor optic-switch modules for 1550 nm optical communication systems were fabricated by using the laser welding technique based on the 30-pin butterfly package. For better coupling efficiency between a switch chip and an optical fiber, tapered fibers of 10-15 /spl mu/m lens radius were used to provide the coupling efficiency up to 60%. The lens to lens distance of the assembled tapered fiber array was controlled within /spl plusmn/1.0 /spl mu/m. A laser hammering technique was introduced to adjust the radial shift, which was critical to obtain comparable optical coupling efficiencies from all the channels at the same time. The fabricated optical switch modules showed good thermal stability, with less than 5% degradation after a 200 thermal cycling. The transmission characteristics of the 4/spl times/4 switch module showed good sensitivities, providing error free transmissions below -30 dBm for all the switching paths. The dynamic ranges for the 4/spl times/4 and 1/spl times/2 switch modules were about 8 dB for a 3 dB penalty and about 17 dB for a 2 dB penalty, respectively.  相似文献   

10.
We present the design and development of a novel integrated multiband phase shifter that has an embedded distributed amplifier for loss compensation in 0.18-/spl mu/m RF CMOS technology. The phase shifter achieves a measured 180/spl deg/ phase tuning range in a 2.4-GHz band and a measured 360/spl deg/ phase tuning range in both 3.5- and 5.8-GHz bands. The gain in the 2.4-GHz band varies from 0.14 to 6.6 dB during phase tuning. The insertion loss varies from -3.7 dB to 5.4-dB gain and -4.5 dB to 2.1-dB gain in the 3.5- and 5.8-GHz bands, respectively. The gain variation can be calibrated by adaptively tuning the bias condition of the embedded amplifier to yield a flat gain during phase tuning. The return loss is less than -10 dB at all conditions. The chip size is 1200 /spl mu/m/spl times/2300 /spl mu/m including pads.  相似文献   

11.
Next-generation optical-communications systems require on-wafer integration of active and passive opto-electronic components to increase operating speed and reduce packaging costs. Increased coupling efficiencies between semiconductor waveguides and optical fibers are of particular interest. A simple and cost-effective method of fabricating a mode-size converter monolithically integrated with a semiconductor waveguide is presented. An on-wafer mode-size converter reduces the number of interfaces in an opto-electronic circuit and improves the coupling efficiency between semiconductor waveguide and optical fiber. Vertically tapered epilayers are deposited in a single epitaxial growth run using shadow-masked growth by chemical-beam epitaxy, avoiding complex and expensive processing and regrowth stages. Waveguides that taper vertically and horizontally over /spl sim/1 mm for gradual expansion of the mode size are demonstrated. Waveguide loss measurements showed that there was negligible loss across the tapered regions. A loss of <2 dB/interface was achieved compared with /spl sim/8 dB/interface for a butt-coupled discrete device.  相似文献   

12.
Operation of a continuous-fiber modulator based on coupling from a fiber side-polished beyond cut-off to a multimode planar waveguide has been demonstrated for the first time at gigahertz frequencies. The bandwidth of the modulator electrode structure was /spl sim/4 GHz while the optical insertion loss was measured at <0.5 dB. The device was used to produce mode-locked pulse trains in an erbium fiber laser at repetition rates of /spl sim/3 GHz.  相似文献   

13.
Park  S. Song  S.H. 《Electronics letters》2006,42(7):402-404
Proposed is a polymeric variable optical attenuator based on long range surface plasmon polaritons (LRSPPs) along a thin metal stripe embedded in polymers. The device is operated by controlling radiation loss of the LRSPP mode resulting from the temperature gradient of the polymer cladding caused by a heater. For guiding LRSPPs and efficient coupling of singlemode fibres, gold stripes 20 nm thick, 4 /spl mu/m wide and 1 cm long are utilised. To obtain a long physical lifetime, the heater is formed on the top of the polymer cladding with a 200 nm Au film which is about ten times thicker than the thin metal waveguide. The fabricated device is characterised at a wavelength of 1.55 /spl mu/m, exhibiting high attenuation of less than 30 dB with an operating power of 100 mW. A fibre-to-fibre total insertion loss of 6.1 dB is achieved when using singlemode fibres.  相似文献   

14.
We present the design of an integrated multiband phase shifter in RF CMOS technology for phased array transmitters. The phase shifter has an embedded classical distributed amplifier for loss compensation. The phase shifter achieves a more than 180/spl deg/ phase tuning range in a 2.4-GHz band and a measured more than 360/spl deg/ phase tuning range in both 3.5-GHz and 5.8-GHz bands. The return loss is less than -10dB at all conditions. The feasibility for transmitter applications is verified through measurements. The output power at a 1-dB compression point (P/sub 1 dB/) is as high as 0.4dBmat 2.4GHz. The relative phase deviation around P/sub 1 dB/ is less than 3/spl deg/. The design is implemented in 0.18-/spl mu/mRF CMOS technology, and the chip size is 1200/spl mu/m /spl times/ 2300 /spl mu/m including pads.  相似文献   

15.
The results achieved with polymer Y-splitters, codirectional couplers, and multimode interference couplers, realized by deep ultraviolet lithography are presented. The devices are designed and fabricated for the 1.55-/spl mu/m wavelength region and have a waveguide loss of 1 dB/cm. The waveguide width is 7.5 /spl mu/m. The fiber-chip coupling loss is 0.5 dB per facet. The polarization-dependent loss is <0.15 dB.  相似文献   

16.
We describe fabrication of the first optical star coupler in silicon-on-insulator (SOI) technology. The 5/spl times/9 coupler consists of two silicon rib waveguide arrays with a radiative slab waveguide region. The star geometry was analyzed and designed using the beam propagation method. The coupler exhibits low loss (average excess insertion loss /spl alpha//spl sim/1.3 dB) and good coupling uniformity (standard deviation /spl sigma//spl sim/1.4 dB) at /spl lambda/=1.55 /spl mu/m. It represents a key component for realization of photonic circuits in a silicon integrated circuit technology.  相似文献   

17.
A novel spot-size converter based on a vertical ridge waveguide taper for super-high-/spl Delta/ silica waveguides is demonstrated. This structure can be formed with a simple fabrication process. The coupling loss between a singlemode fibre and a 2.5%-/spl Delta/ silica waveguide was reduced to 0.31 dB/point compared to 2.7 dB/point for conventional straight waveguides.  相似文献   

18.
2/spl times/2 electrooptic switches consisting of a pair of asymmetric Y junctions and Mach-Zehnder interferometer have been demonstrated in polymeric waveguides. The switching voltage is 15 V with 1.5 cm long electrode for TM polarized light at 1.3 /spl mu/m. When the branching angle of the asymmetric Y junction is 0.2/spl deg/, crosstalk of -27 to -22 dB are obtained for both input arms. The measured insertion loss by the lens coupling is about 9-10 dB.  相似文献   

19.
A novel lead-free flip-chip technology for mounting high-speed compound semiconductor ICs, which have a relatively severe limitation regarding high-heat treatment, is presented. Solder bump interconnections of 0.95Sn-0.05Au were successfully fabricated by reflowing multilayer metal film at as low a temperature as 220/spl deg/C. The bumps were designed to have a diameter of 36 /spl mu/m with a gap between the chip and the motherboard of 24 /spl mu/m. The electrical characteristics of flip-chip-mounted coplanar waveguide chips were measured. The deterioration in reflection loss in the flip chip mounting was less than 3 dB for frequencies up to W-band.  相似文献   

20.
Variable polarization compensation has been demonstrated at 100 GHz. The device consists of two interlocking V-groove artificial dielectric gratings that produce a birefringence that varies with the separation distance. A maximum retardance of 74/spl deg/ has been obtained experimentally in a silicon device, in good agreement with rigorous coupled-wave computer simulations. Further simulations predict that adding quarter wave dielectric antireflection (AR) coatings to the outer surfaces of the device can reduce the insertion loss to below 4 dB. The use of rectangular grooved gratings provides increased retardance and reduced loss. It is predicted that a coupled device with rectangular grooved gratings will be capable of maximum retardance in excess of 180/spl deg/, with low insertion loss (<0.6 dB). The sensitivity of the wave retardation as a function of mechanical separation has a peak value of 485/spl deg//mm. The design and micromachining fabrication techniques scale for operation at submillimeter wavelengths.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号