首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Porous alumina with a highly textured microstructure was fabricated by pulse electric current sintering (PECS) using alumina platelets. Highly oriented porous alumina with a porosity of 3%–50% was obtained by a pressure-controlled method of PECS. The properties of the highly textured porous alumina were measured in two directions. The nitrogen gas permeance and thermal conductivity at room temperature were higher in the direction along the platelet length due to the higher continuity of pores and the connectivity of alumina platelets, respectively. The anisotropy of the thermal conductivity at room temperature was investigated and explained by the effect of grain size of platelets as well as morphology and orientation of pores. The bending strength was higher with the loading direction along the platelet thickness. The thermal shock strength was clearly different in the two directions. The difference in the thermal shock strength was investigated by the measurement of properties and thermal stress analysis.  相似文献   

2.
Three aspects, which significantly reduce heat transfer through a polycrystalline material, are considered in this paper: porosity, grain boundary thermal resistance and the state of the grain–grain contacts. Tin oxide and alumina were chosen as model systems. Tin oxide, without a sintering additive, does not densify during thermal treatment but grain growth is not inhibited and consequently the microstructure can be varied. In alumina, variation of the thermal treatment conditions varies both grain size and porosity. Thermal conductivity measurements, using the laser-flash technique, reveal that the thermal resistance of a pressed powder compact is almost independent of temperature and at least a factor of 2.5 greater than a consolidated material with similar pore volume fraction and grain size. The reduced contact area of the grain–grain interfaces in the green body can explain this as demonstrated by numerical simulation. We also show that larger grain size increases the thermal conductivity of the porous ceramic.  相似文献   

3.
Thermal Resistance of Grain Boundaries in Alumina Ceramics and Refractories   总被引:1,自引:0,他引:1  
The influence of grain boundaries on heat transfer through polycrystalline alumina has been investigated between 20° and 500°C. The thermal conductivities of small-grained porous ceramics and large-grained dense ceramics have been measured using the laser-flash technique. Two methods have been developed to assess the average thermal resistance of a grain boundary. The first method is based on the comparison of room-temperature thermal conductivities for dense ceramics that have various average grain sizes. This method yields a value of 0.9 × 10−8 m2·K·W−1. The second method, particularly suitable for porous ceramics, is based on the extrapolation of the inverse of the thermal conductivity versus temperature to give an intercept with the axis at T = 0 K. This value is attributed to the thermal resistance of grain boundaries. By taking into account the influence of the pore content using an effective medium theory, the average thermal resistance of a grain boundary has been evaluated to be 1.3 × 10−8 m2·K·W−1 in dense alumina and 2.2 × 10−8 m2·K·W−1 in alumina containing a pore volume fraction of 0.3.  相似文献   

4.
《Ceramics International》2023,49(1):383-391
Considering the low-cost and environmental protection, the porous ceramics with high porosity using natural diatomite powder were successfully prepared by utilizing hot injection moulding and sacrificial fugitives. The impacts of different content of starch as a pore-forming agent on the phase composition, mechanical properties, thermal conductivity, and micro-structure of porous ceramics were investigated. The results demonstrate that starch content can significantly affect the mechanical properties and thermal conductivity of diatomite-based porous ceramics. When the starch content increased from 0 wt % to 50 wt %, the porosity increased from 61.2% to 80%, while the thermal conductivity decreases from 0.239 W/(m K) to 0.098 W/(m K). The low thermal conductivity of porous ceramics may be related to the macroporous–mesoporous composite structure. With the starch content increased, a greater chance of starch granule contact, higher internal pore sizes and a wider pore size distribution in the prepared samples, which resulting in lower mechanical strength, such as the three-point bending strength from 2.83 MPa to 0.46 MPa.  相似文献   

5.
Porous alumina ceramics having unidirectionally aligned cylindrical pores were prepared by extrusion method and compared with porous ceramics having randomly distributed pores prepared by conventional method, and their gas permeability and mechanical properties were investigated. SEM micrographs of the porous alumina ceramics prepared by the extrusion method using nylon fibers as the pore former showed excellent orientation of cylindrical pores. The bending strength and Weibull modulus of the extruded porous alumina ceramics with 39% porosity were 156 MPa and 17, respectively. These mechanical properties of extruded samples were higher than those of the conventional porous alumina ceramics. The strength decreased from 156 to 106 MPa with increasing pore size from 8.5 to 38 μm. The gas permeability of the extrusion samples is higher than that of the conventional samples and increased with increasing of porosity and pore size.  相似文献   

6.
The previous report of this work has demonstrated the fabrication and properties of porous yttria-stabilized zirconia (YSZ) ceramics with unidirectionally aligned pore channels. As a follow-up study, the present work aims at lowering the thermal conductivity of the porous YSZ ceramics by silica aerogels impregnation. The porous YSZ ceramics were immersed in an about-to-gel silica sol. Both the unidirectionally aligned pore channels and the inter-grain pores by grain stacking in the channel-pore wall of the porous YSZ ceramics were impregnated with the silica sol. After aging and supercritical drying, silica aerogels formed in the macroporous network of the porous YSZ ceramics with unidirectionally aligned pore channels. The influences of silica aerogel impregnation on the microstructure and properties of porous YSZ ceramics with unidirectional aligned pore channels were investigated. The porosity decreased after impregnation with silica aerogels. Both microstructure observation and pore size distribution indicated that both channel-pore size and inter-grain pore-size decreased significantly after impregnation with silica aerogels. Impregnating porous YSZ ceramics with silica aerogels remarkably lowered the room-temperature thermal conductivity and enhanced the compressive strength. The as-fabricated materials are thus suitable for applications in bulk thermal isolators.  相似文献   

7.
Meso-Macro porous alumina was fabricated using yeast cells as a pore-forming agent. Alumina powder synthesis was achieved by a low cost process (recrystallisation of alum).The effect of the pore forming agent on the true porosity, bulk density and thermal conductivity of porous alumina was characterized. The results show that the true porosity increased with the increasi ng addition of yeast cells. The bulk density and thermal conductivity at room temperature decreased with the increasing yeast addition. A genetic algorithm method was used to minimize the thermal conductivity of the macro-porous alumina based on the amount of yeast cells used, the sintering temperature, and the hold time. The genetic algorithm found that the best thermal conductivity achievable was equal to 0.152 Watt/m. °C at 20wt% concentration of yeast, a sintering temperature of 1230°C and 1.5 hours of soaking time. The experimental value was 0.14 Watt/m. °C and the slight variance between these values were postulated to be due to experimental error in the measurements.  相似文献   

8.
This work aims at studying the influence of thermal treatment on the microstructure, resistivity and technological properties of porous alumina ceramics prepared via starch consolidation casting (SCC) technique. Colloidal suspensions were prepared with three different contents of alumina solid loading (55, 60 and 65 mass%) and corn starch (3, 8 and 13 mass%). The sintered samples at 1400, 1500, 1600 and 1700 °C, show open porosity between 46 and 64%, depending on the starch content in the precursor suspensions and sintering temperature. The pore structures were analyzed by SEM. The effect of corn starch content on the apparent porosity, pore size distribution, linear shrinkage and electrical resistivity as well as cold crushing strength of the sintered porous alumina ceramics was also measured. These porous alumina ceramics are promising porous ceramic materials for using in a wide range of thermal, electrical and bioceramics applications as well as filters/membranes and gas burners, due to their excellent combination properties.  相似文献   

9.
New gel system for preparing mullite porous ceramics by gel-casting freeze-drying was proposed, using pectin as gel source and alumina and silica as raw materials. Directional channels were formed due to sublimation of water during freeze-drying and decomposition of pectin during high temperature sintering to prepare porous mullite ceramic membranes. Effects of solid content on the properties of mullite ceramics in terms of phase composition, microstructure, apparent porosity, bulk density, pore size distribution, compressive strength, thermal conductivity, pressure drop, and gas permeability were investigated. It was found that prepared porous mullite possessed high apparent porosity (56.04%–75.34%), low bulk density (.77–1.37 g/cm3), uniform pore size distribution, relatively high compressive strength (.61–3.03 MPa), low thermal conductivity (.224–.329 W/(m·K)), high gas permeability coefficient (1.11 × 10−10–4.73 × 10−11 m2), and gas permeance (2.18 × 10−2–9.32 × 10−3 mol⋅m−2⋅s−1⋅Pa−1). These properties make prepared lightweight mullite ceramic membranes promising for application in high temperature flue gas filtration. Proposed gel system is expected to provide a new route to prepare porous ceramics with high porosity and directional channels.  相似文献   

10.
In order to investigate the relationship between pore structure and thermal conductivity as well as mechanical strength, porous alumina ceramics (PAC) with various pore structures were fabricated, using starch as the pore‐forming agent. Fractal theory was employed to characterize the pore size distribution more accurately than ever used parameters. The results show that the increase in starch content in PAC leads to an enhanced porosity, a higher mean pore size, and reduced fracture dimension, thermal conductivity and strength. The fractal analysis indicated that the fractal dimension decreases gradually and reaches its minimum value with increasing the starch content up to 25 wt%, but the further incorporation results in an opposite trend. It is suggested from micro‐pore fractographic analysis that the optimization of both thermal insulation performance and mechanical strength are positively correlated with the increase in the mean pore size and proportion of 2‐14 μm pores but negatively corrected with the porosity. These results provide a new perspective and a deeper understanding for fabrication of PAC with both excellent thermal insulation and mechanical performance.  相似文献   

11.
Porous mullite ceramics with an open/closed pore structure were prepared by protein foaming method combined with fly ash hollow spheres. Both the open porosity and total porosity of samples were enhanced by increasing the hollow sphere content. Mullite whiskers with a diameter of 0.2–4 μm were grown in-situ in the porous mullite ceramics with an AlF3 catalyst, conforming to a vapor-solid growth mechanism. The pore structure of the porous mullite ceramics was significantly affected by the mullite whiskers which increased the open porosity and total porosity. Moreover, the median pore size was reduced from 65.05 μm to 36.92 μm after the introduction of mullite whiskers. The flexural strength and the thermal conductivity of the samples decreased with increasing total porosity. The porosity dependence of the thermal conductivity was well described by the universal model, providing a reference for the prediction of thermal conductivity of porous ceramics with open/closed pores.  相似文献   

12.
《Ceramics International》2017,43(18):16430-16435
For recycling waste refractory materials in metallurgical industry, porous alumina ceramics were prepared via pore forming agent method from α-Al2O3 powder and slide plate renewable material. Effects of slide plate renewable material (SPRM) on densification, mechanical strength, thermal conductivity, phase composition and microstructure of the porous alumina ceramics were investigated. The results showed that SPRM effectively affected physical and thermal properties of the porous ceramics. With the increase of SPRM, apparent porosity of the ceramic materials firstly increased and then decreased, which brought an opposite change for the bulk density and thermal conductivity values, whereas the bending strength didn’t decrease obviously. The optimum sample A2 with 50 wt% SPRM introducing sintered at 1500 °C obtained the best properties. The water absorption, apparent porosity, bulk density, bending strength and thermal conductivity of the sample were 31.7%, 62.8%, 1.71 g/cm3, 47.1 ± 3.7 MPa and 1.73 W/m K, respectively. XRD analysis indicated that a small quantity of silicon carbide and graphite in SPRM have been oxidized to SiO2 during the firing process, resulting in rising the porous microstructures. SEM micrographs illustrated that rod-like mullite grains combined with plate-like corundum grains to endow the samples with high bending strength. This study was intended to confirm the preparation of porous alumina ceramics with high porosity, good mechanical properties and low thermal conductivity by using SPRM as pore forming additive.  相似文献   

13.
The key challenge in designing lightweight wear linings for industrial furnaces lies in the fabrication of porous materials with the smallest possible open porosity and pore size. In this study, in order to increase the migration velocity of the grain boundary, alumina sol and nanosized α-Al2O3 were introduced for their high temperature grain boundary superplasticity. Investigations on the effect of various types of nano-alumina additives on pore repartition and some properties of sintered lightweight alumina were carried out. The introduction of nano-alumina increased the surface stress and accelerated the division of pores. The addition of alumina sol and nanosized α-Al2O3 showed similar effects on the physical properties of lightweight alumina. Compared to samples without addition of nano-alumina, samples containing alumina sol and nanosized α-Al2O3 exhibited the increased closed porosities (from 2.8% to 7.1% and 9.2%, respectively), decreased open porosities (from 12.4% to 10.5% and 5.2%, respectively), lower thermal conductivities (decreasing amplitudes of 16% and 9%, respectively) and increased intracrystalline porosity. Furthermore, the addition of different types of nano-alumina led to microstructural differences in the samples. Abnormally grown grains, with a size of approximately 100–200grain μm, containing numerous smaller intracrystalline pores inside were observed in the sample added alumina sol. The sample containing nanosized α-Al2O3 exhibited a homogeneous distribution of grain sizes. The different grain growth rates, accompanying with various types of nano-alumina, were responsible for the differences in microstructure.  相似文献   

14.
The present study demonstrates a cost effective way to fabricate porous ceramics with tailored microstructures using rice husk (RH) of various range of particle sizes as a pore former and sucrose as a binder as well as a pore former. Sample microstructures reveal randomly oriented elongated coarse pores and fine pores (avg. size 4 μm) created due to burnout of RH and sucrose, respectively. Porous alumina ceramics with 20–66 vol% porosity and 50–516 μm avg. pore size (length), having isolated and/or interconnected pores, were fabricated using this process. Mechanical properties of the porous samples were determined as a function of porosity and pore microstructure. The obtained porous ceramics exhibited flexural strength of 207.6–22.3 MPa, compressive strength of 180–9.18 MPa, elastic modulus of 250–18 GPa and hardness of 149–18 HRD. Suggested application area includes thermal, filtration, gas purging etc.  相似文献   

15.
Alumina has high heat resistance and corrosion resistance compared to other ceramics such as silica or mullite. However, for its application to refractory bricks, its high thermal conductivity must be reduced. To reduce this thermal conductivity by increasing the porosity, a GS (gelation of slurry) method that can produce high porosity solid foam was applied here to produce the alumina refractory brick. This method was successfully applied to produce alumina foam with high porosity and thermal conductivity of the foam is evaluated. At room temperature, the thermal conductivity was about 0.12 W/mK when the foam density was 0.1 g/cm3. At elevated temperature above 783 K, thermal conductivity of the foam was strongly affected by heat radiation and increased with increasing temperature, in contrast to the thermal conductivity of alumina itself, which decreased with increasing temperature. The alumina foams developed here achieved sufficient thermal insulating properties for use in refractory bricks.  相似文献   

16.
The possibility of developing fine-grained (∼0.5–3 μm) and dense (≥0.98ρth) alumina (90 vol%)–aluminum titanate (10 vol%) composites with improved thermal shock resistance and maintained strength is investigated. One alumina material and one composite with similar microstructures (porosity and grain-size distribution) were fabricated to investigate the effect of Al2TiO5 on thermal shock behavior. The size of the Al2TiO5 particles was kept under 2.2 μm to avoid spontaneous microcracking. The mechanical and thermal properties of the materials involved in their response to thermal shock and the results for the evolution of indentation cracks of equal initial crack length with increasing Δ T in samples quenched in glycerine are described. The combination of thermal and mechanical properties—thermal conductivity, thermal expansion coefficient, Young's modulus, and toughness—improve the thermal shock resistance of the alumina–aluminum titanate composite in terms of critical temperature increment (>30%). The suitable structural properties of alumina—hardness and strength—are maintained.  相似文献   

17.
为改进毛细芯的传热传质性能,以泡沫金属铜或镍为骨架,在其内部填充树形金属铜粉或镍粉,通过树形金属粉末调控泡沫金属内的孔隙结构及孔径分布,制备出一种以金属泡沫为基底的复合毛细芯,并对制备的复合毛细芯的孔隙率、抽吸性能、有效热导率及蒸发率进行研究。结果表明,这种结构的复合毛细芯孔隙率较高,有效热导率为4.1?9.8 W/(m?K)。从毛细芯毛细抽吸、有效热导率和蒸发率综合来看,以金属泡沫镍为骨架、树形镍粉末与造孔剂质量比为5:5的复合毛细芯性能最好。  相似文献   

18.
A general and versatile method for the production of cellular materials from radiation curable solvent-free colloidal ceramic dispersions containing pore formers has been developed. By this technique cellular ceramic articles with a precisely controlled porosity, cell size and shape are obtained for compositions containing solid pore formers. Monolithic bulk samples are obtained by thermal curing, whereas thin films and multi-layered articles are advantageously produced by UV curing. In this work the influence of three different spherical pore former types, PE, PS and PMMA, on the processing and final properties of the porous materials using alumina as model material is studied. The effect of pore former type and concentration on rheology, curing behaviour, debinding and sintering steps as well as thermal conductivity and mechanical strength of the sintered cellular materials is presented. It is also shown that the choice of pore former type modifies the sintering behaviour and resulting properties.  相似文献   

19.
《Ceramics International》2021,47(24):33978-33987
In this work, a novel and facile technique based on using KCl as space holders, along with partial sintering (at 1900 °C for 30 min), was explored to prepare porous ZrB2–SiC ceramics with controllable pore structure, tunable compressive strength and thermal conductivity. The as-prepared porous ZrB2–SiC samples possess high porosity of 45–67%, low average pore size of 3–7 μm, high compressive strength of 32–106 MPa, and low room temperature thermal conductivity of 13–34 W m−1 K−1. The porosity, pore structure, compressive strength and thermal conductivity of porous ZrB2–SiC ceramics can be tuned simply by changing KCl content and its particle size. The effect of porosity and pore structure on the thermal conductivity of as-prepared porous ZrB2–SiC ceramics was examined and found to be consistent with the classical model for porous materials. The poring mechanism of porous ZrB2–SiC samples via adding pore-forming agent combined with partial sintering was also preliminary illustrated.  相似文献   

20.
Porous alumina-hydroxyapatite (HA) and alumina-tricalcium phosphate (TCP) composites have been fabricated to investigate the effect of HA and ??-TCP addition on protein foaming-consolidation derived porous alumina. HA and ??-TCP loadings along with yolk content, starch content, and sintering temperature were varied to modulate performance of the porous composites. The rheological behavior of slurry shifted from pseudoplastic flow to a Newtonian fluid with increasing yolk concentration. The foaming capacity of slurry increased with yolk addition. The addition of starch into slurry resulted in bigger pore size and avoided the porous bodies from cracks. The shrinkage of sintered bodies increased with increasing HA loading, but decreased with increasing ??-TCP loading. The compressive strength of porous alumina-HA body was found 2.9?MPa at 45.8% porosity and 20.4?MPa at 36.8% porosity. The increasing porosity of porous alumina-TCP body from 56.1 to 61.6% improved the compressive strength from 3.1 to 4.2?MPa. Increasing sintering temperature resulted in large grain size among powder particles, thus improving the compressive strength of porous bodies. Preliminary results of DF-1 cells culture on the surface of porous alumina and alumina-TCP samples are also reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号