首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 348 毫秒
1.
《Ceramics International》2016,42(13):14910-14917
The synthetic bone powder was studied as a raw materials for bone china, completely replacing natural bone ash raw materials. The physical and thermal properties of samples obtained by the two bone powders were tested and comparatively studied. Performance tests included pyroplastic deformation, flexural strength, bulk density, sintering shrinkage, water absorption, transmittance, thermal expansion coefficient and the thermal shock resistance. The phase composition and morphology were investigated by X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively. The results indicated that using synthetic bone powder could shorten the preparation time, reduce the sintering temperature and result in high-quality bone china. The pyroplastic deformation decreased from 9.14% to 7.92%, the three-point flexural strength increased from 123 MPa to 191 MPa, the light transmittance (at a 2-mm thickness) increased from 6.7% to 11.2%, the thermal expansion coefficient decreased from 8.24×10−6 °C−1 to 7.69×10−6 °C−1, and the thermal shock resistance increased from 140 °C to 180 °C. A continuous interface layer without cracks was produced by using the synthetic bone powder.  相似文献   

2.
Porcelain stoneware tile is the best class of ceramic tiles regarding technical performance. Low porosity and high glass content are some of its highlighted characteristics. The manufacturing cost is highly dependent on the feldspar content and the processing flow rate. Certain technical bottlenecks in the manufacturing steps, such as milling, forming, and firing, are intrinsically associated with limitations in the processing properties, such as the dry strength, bulk density, and pyroplastic deformation. In this work, improvements in these properties were achieved using high-energy milling (HEM) after conventional milling (CM). This study was carried out on a pilot industrial scale in the milling stage. Six experimental runs were evaluated. Slurries were spray-dried. The powders were humidified with 6.5% moisture. Specimens were conformed under a specific pressure of 45 MPa. The firing was performed using temperature ranging from 1150 to 1230°C. The use of HEM, in comparison to traditional milling for the similar particle-size distributions, has increased the dry density, +0.2 g.cm−3, dry bending strength, +1.0 MPa, and decreased the pyroplastic deformation index, −1.10−5 cm−1. These results allow an estimated thickness reduction of 10%.  相似文献   

3.
Thin films of polycarbosilane (PCS) were coated on a Si (100) wafer and converted to silicon carbide (SiC) by pyrolyzing them between 800 and 1150 °C. Granular SiC films were derived between 900 and 1100 °C whereas smooth SiC films were developed at 800 and 1150 °C. Enhancement of diamond nucleation was exhibited on the Si (100) wafer with the smooth SiC layer generated at 1150 °C, and a nucleation density of 2 × 1011 cm 2 was obtained. Nucleation density reduced to 3 × 1010 cm 2 when a bias voltage of − 100 V was applied on the SiC-coated Si substrate. A uniform diamond film with random orientations was deposited to the PCS-derived SiC layer. Selective growth of diamond film on top of the SiC buffer layer was demonstrated.  相似文献   

4.
Polycrystalline SiC ceramics with 10 vol% Y2O3-AlN additives were sintered without any applied pressure at temperatures of 1900-2050°C in nitrogen. The electrical resistivity of the resulting SiC ceramics decreased from 6.5 × 101 to 1.9 × 10−2 Ω·cm as the sintering temperature increased from 1900 to 2050°C. The average grain size increased from 0.68 to 2.34 μm with increase in sintering temperature. A decrease in the electrical resistivity with increasing sintering temperature was attributed to the grain-growth-induced N-doping in the SiC grains, which is supported by the enhanced carrier density. The electrical conductivity of the SiC ceramic sintered at 2050°C was ~53 Ω−1·cm−1 at room temperature. This ceramic achieved the highest electrical conductivity among pressureless liquid-phase sintered SiC ceramics.  相似文献   

5.
Nanoparticles of gadolinium-doped cerium oxide (GDC) were synthesized using solvent-deficient method and their sinterability and electrical properties were investigated using the powder and cold sintering process. The GDC powder was uniaxially pressed into cylindrically-shaped pellets with a mixture of nitric acid and hydrogen peroxide at 200°C to encourage particle arrangement during forming process. These bulk samples were annealed using two different temperature profiles: at 800°C for 5 hours and at 1300°C for 1 minute—800°C for 5 hours. The samples produced using HNO3/H2O2 mixture showed higher relative density than ones without it. Ionic conductivity of the sample sintered through the two-step profile was obtained from electrochemical impedance spectroscopy. Although the grain conductivity for the samples (8.0 × 10−3 S cm−1 at 500°C, and 3.3 × 10−2 S cm−1 at 700°C) is on par with a conventionally sintered sample, the measured total conductivity (3.9 × 10−3 S cm−1 at 500°C, and 2.5 × 10−2 S cm−1 at 700°C) is about 10 times higher than the conventionally sintered one and is comparable to the values seen in the previous studies for GDC which employed higher sintering temperature, pointing to the effectively lower grain-boundary impedance. This result could be attributed to no significant phase segregation along grain boundaries due to the low-temperature processing.  相似文献   

6.
The precise control of the geometry of pottery is a challenge owing to the undesirable shrinkage and deformation observed after firing. In this study, near-zero sintering shrinkage pottery (NZS) with the sintering shrinkage (SS) of < 2.0% and pyroplastic deformation index (PI) of < 1.5 × 10?6 mm?1 was developed with varying amounts of added alumina and wollastonite. Wollastonite promotes anorthite crystallisation, thereby preventing sintering shrinkage at ~1200 °C. The mechanism for the suppressed liquid-phase sintering of the pottery was also analysed. Moreover, NZS were obtained after firing at 1300 °C with a specific phase composition for suppressing the pyroplastic deformation. Thus, NZS was successfully prepared through liquid sintering from natural minerals. Therefore, this study provides a guide for the fabrication of earthenware, stoneware, unglazed porcelain and ceramic tiles with precise dimension and geometry. Additionally, it is also important for reducing the production loss in huge pottery and large-scale production by countering the sintering shrinkage.  相似文献   

7.
Conducting composites were prepared by melt mixing of ethylene–propylene–diene terpolymer (EPDM) or styrene‐butadiene rubber (SBR) and 35 wt % of carbon black (CB). Stability of electrical properties of rubber/CB composites during cyclic thermal treatment was examined and electrical conductivity was measured in situ. Significant increase of the conductivity was observed already after the first heating–cooling cycle to 85°C for both composites. The increase of conductivity of EPDM/35% CB and SBR/35% CB composites continued when cyclic heating‐cooling was extended to 105°C and 125°C. This effect can be explained by reorganization of conducting paths during the thermal treatment to the more conducting network. EPDM/35% CB and SBR/35% CB composites exhibited very good stability of electrical conductivity during storage at ambient conditions. The electrical conductivity of fresh prepared EPDM/35% CB composite was 1.7 × 10−2 S cm−1, and slightly lower conductivity value 1.1 × 10−2 S cm−1 was measured for SBR/35% CB. The values did not significantly change after three years storage. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

8.
Fluorinated amorphous carbon (a–C:F) films have been deposited by electron cyclotron resonance chemical vapor deposition (ECR–CVD) at room temperature using C4F8 and CH4 as precursor gases. The chemical compositions and electrical properties of a–C:F films have been studied by X-ray photoelectron spectroscopy (XPS), capacitance–voltage (C–V) and current-voltage (IV) measurements. The results show that C–CFx and C–C species of a–C:F films increase and fluorine content decreases after annealing. The dielectric constant of the annealed a–C:F films increases as a result of enhancement of film density and reduction of electronic polarization. The densities of fixed charges and interface states decrease from 1.6 × 1010 cm 2 and (5–9) × 1011 eV 1 cm 2 to 3.2 × 109 cm 2 and (4–6) × 1011 eV 1 cm 2 respectively when a–C:F films are annealed at 300 °C. The magnitude of CV hysteresis decreases due to reduced dangling bonds at the a–C:F/Si interfaces after heat treatment. The conduction of a–C:F films shows ohmic behavior at lower electric fields and is explained by Poole–Frankel (PF) mechanism at higher electric fields. The PF current increases indicative of reduced trap energy when a–C:F films are subjected to higher annealing temperatures.  相似文献   

9.
《Ceramics International》2020,46(10):16266-16273
SrCe0.9Y0.1O3-δ-Ce0.9Y0.1O2-δ (SCY-YDC, 1:1 mole ratio), as a novel composite electrolyte, was successfully synthesized and characterized. X-ray diffraction patterns showed that SCY-YDC composite electrolyte is a mixture of SCY and YDC. Besides, no impurity phase emerged after sintering at 1550 °C for 10 h. AC impedance spectroscopy was used to determine the electrical properties of SCY-YDC at 500–800 °C in various atmospheres. Partial conductivities of oxygen vacancies, protons, and electrons (p-type) were calculated using the defect structure model. Results showed that SCY-YDC is a mixed (hole, proton, and oxygen-ion) conductor. Moreover, the contribution of holes is minor at 650–800 °C in high pressure (1 atm) or low pressure (10−4 atm) O2 atmospheres. Dominant carrier switched from protons to oxygen ions as temperature increased at vapor pressure in air of 0.038 atm. Total conductivity for SCY-YDC is 6.19 × 10−3 S cm−1 at 800 °C under pO2 = 1 atm and pH2O = 6 × 10−3 atm, which is higher than that of SCY (2.47 × 10−3 S cm−1). Results also showed that SCY-YDC composite material exhibits higher ionic conductivity and lower electron-hole conductivity than SCY. Electron-hole transference number for SCY-YDC is 0.049 at 800 °C in pO2 = 0.21 atm and pH2O = 0.038 atm. Ultraviolet–visible spectrophotometry results provided evidence that SCY-YDC can suppress electron conduction.  相似文献   

10.
In this work, we have exploited FLASH sintering as an alternative sintering process in the production of porcelain stoneware. FLASH sintering of porcelain stoneware occurred at temperatures ∼ 1020 °C, for 500 V cm-1, 2 mA mm-2 in 30 s. These conditions are significantly less severe than those typically applied in its conventional sintering, 1150–1250 °C for 1 h. Despite the reduction of time and sintering temperature, FLASH sintered samples exhibit heterogeneous microstructure and elemental distribution, with localized glassy phase formed on the positive pole. By decreasing the feldspar content, less localized glassy phase and more uniform microstructures were obtained, being of relevance the highest density and microstructure uniformity attained in the composition without feldspar. These results extend the FLASH sintering applicability and illustrate its importance for the development of alternative sintering technologies in traditional ceramic industry, that in addition may benefit from the reduction of feldspar in the porcelain stoneware production.  相似文献   

11.
《Ceramics International》2016,42(3):4532-4538
The structural, thermal and electrochemical properties of the perovskite-type compound La1−xNdxFe0.5Cr0.5O3 (x=0.10, 0.15, 0.20) are investigated by X-ray diffraction, thermal expansion, thermal diffusion, thermal conductivity and impedance spectroscopy measurements. Rietveld refinement shows that the compounds crystallize with orthorhombic symmetry in the space group Pbnm. The average thermal expansion coefficient decreases as the content of Nd increases. The average coefficient of thermal expansion in the temperature range of 30–850 °C is 10.12×10−6, 9.48×10−6 and 7.51×10−6 °C−1 for samples with x=0.1, 0.15 and 0.2, respectively. Thermogravimetric analyses show small weight gain at high temperatures which correspond to filling up of oxygen vacancies as well as the valence change of the transition metals. The electrical conductivity measured by four-probe method shows that the conductivity increases with the content of Nd; the electrical conductivity at 520 °C is about 4.71×10−3, 6.59×10−3 and 9.62×10−3 S cm−1 for samples with x=0.10, 0.15 and 0.20, respectively. The thermal diffusivity of the samples decreases monotonically as temperature increases. At 600 °C, the thermal diffusivity is 0.00425, 0.00455 and 0.00485 cm2 s−1 for samples with x=0.10, 0.15 and 0.20, respectively. Impedance measurements in symmetrical cell arrangement in air reveal that the polarization resistance decreases from 55 Ω cm−2 to 22.5 Ω cm−2 for increasing temperature from 800 °C to 900 °C, respectively.  相似文献   

12.
Although Cf/ZrB2–SiC composites prepared via direct ink writing combined with low-temperature hot-pressing were shown to exhibit high relative density, high preparation efficiency, and excellent flexural strength and fracture toughness in our previous work, their oxidation and ablation resistance at high and ultrahigh temperatures had not been investigated. In this work, the oxidation and ablation resistance of Cf/ZrB2–SiC composites were evaluated via static oxidation at high temperature (1500°C) and oxyacetylene ablation at ultrahigh temperatures (2080 and 2270°C), respectively. The thickness of the oxide layer of the Cf/ZrB2–SiC composites is <40 μm after oxidizing at 1500°C for 1 h. The Cf/ZrB2–SiC composites exhibit non-ablative properties after oxyacetylene ablation at 2080 and 2270°C for >600 s, with mass ablation rates of 3.77 × 10−3 and 5.53 × 10−3 mg/(cm2 s), and linear ablation rates of −4.5 × 10−4 and −5.8 × 10−4 mm/s, respectively. Upon an increase in the ablation temperature from 2080 to 2270°C, the thickness of the total oxide layer increases from 360 to 570 μm, and the carbon fibers remain intact in the unaffected region. Moreover, the oxidation and ablation process of Cf/ZrB2–SiC at various temperatures was analyzed and discussed.  相似文献   

13.
The sintering temperature of ZnO ceramic hollow fibers (HFs) is generally up to 1400°C and presents a major challenge to obtain HFs with high permeability and mechanical strength at lower sintering temperature. This work proposed a glass powder-assisted method to reduce the sintering temperature by using their adhesive property. ZnO-glass composite HFs with longer finger-like channels, high permeability (3.12 × 10−5–9.1 × 10−6 mol·m−2·s−1·Pa−1) and good mechanical strength (42.12–52.75 MPa) were obtained at sintering temperature of 1150°C. More glass powders can generate stronger bonding effect during the ZnO particles, resulting in a decrease in porosity and an increase in the mechanical strength of ZnO-HF. These ZnO-HFs were further applied for inducing ZIF-8 membranes by one-step solvothermal growth. ZnO not only provides the growth and nucleation centers but also acts as transitional bridge to make the ZIF embed into support to improve the bonding force between membrane and support. Therefore, HF-supported-ZIF-8 membrane exhibited both mechanical and thermal robustness by maintaining their gas separation performance during the 30-min sonication treatment and 50-h operation testing at 25–200°C. Furthermore, this membrane provided good reproducibility. This work opens prospects for preparing ceramic HFs at lower sintering temperature and their functional applications as well as the preparation of MOF membranes.  相似文献   

14.
The solute aqueous centrifugal extraction from carrot gratings was investigated through the effect of some process parameters (centrifugal acceleration, solution temperature and liquid to solid ratio). The carrot gratings were treated by a pulsed electric field (PEF) (670 V cm−1 and 300 pulses of 100 μs) and then subjected to an aqueous centrifugal extraction (accelerations from 14 × g to 5434 × g) at temperatures in the range 18–35°C. The effect of carrot tissue mild preheating (30–50°C) before PEF was also investigated.The increase of centrifugal acceleration up to 150 × g enhances extraction kinetics. The solute concentration then reaches 96% after 25 min of extraction at room temperature or after 15 min of extraction at 35°C. However, any further increase in centrifugal acceleration does not provide more acceleration of extraction. A tissue preheating at 50°C allowed an easier electrical permea-bilisation of cell membranes at lower PEF intensity (300 V cm−1) and shorter PEF extent (30 pulses). A maximum solute yield is then obtained. The kinetics of centrifugal aqueous extraction was described by a single exponential model.  相似文献   

15.
《Ceramics International》2020,46(6):7823-7832
Iron-containing siliconboron carbonitride (SiBCN) ceramics with multiple heterogeneous interfaces were fabricated using the microstructural design and polymer-derived ceramics (PDC) approach. The characterization results revealed the in-situ generation of nanocrystals, including graphite, belt-like silicon nitride (Si3N4), and silicon carbide (SiC) whiskers, in amorphous SiBCN matrix after annealing. At the same time, these dielectric lossy phases successfully constructed multiple heterogeneous interfaces and three-dimensional network structures. Consequently, the conductivity of the ceramics increased from 4.49 × 10−9 (annealed at 800 °C) to 0.67 × 10−4 S cm−1 (annealed at 1600 °C). The real part of permittivity improved from 4.57–3.36 (annealed at 800 °C) to 10.90–8.38 (annealed at 1600 °C) in the frequency range of 2–18 GHz. The formation of multiple heterogeneous interfaces caused interfacial polarization and increased the multiple relaxations, which ultimately led to a superior microwave absorption property with a minimum reflection loss (RLmin) of −34.28 dB and an effective absorption bandwidth (EAB) of 3.76 GHz (8.64–12.4 GHz).  相似文献   

16.
A second phase of Y2O3-stabilized Bi2O3 (Bi0.75Y0.25O1.5,YSB) is introduced into Y2O3-doped CeO2 (Ce0.8Y0.2O1.9,YDC) as a sintering additive and the composite ceramics of YDC-xYSB (x = 0, 5, 10, 20, 30, 40 wt%) are prepared through sintering at 1100°C for 6 h in air atmosphere. The YDC-xYSB ceramics are composed of both YDC and YSB with cubic fluorite structure, and no other impurity phases are detected in XRD patterns. The relative density of YDC-xYSB rises firstly for x ≤5 wt%, and then it declines with YSB addition from 5 to 40 wt%. The average grain size of YDC decreases from 270 nm to 85.7 nm with YSB addition from 0 to 40 wt%. The YSB phase segregates at the grain boundaries of YDC based on the TEM analysis result. The ionic conductivity of YDC-xYSB (x ≥5 wt%) is lower than that of YDC in the test temperature of 200°C–500°C, while it gradually exceeds that of YDC in 500°C–750°C. At 750°C, the conductivity of YDC-30%YSB (6.22 × 10−2 S/cm) is 1.35 times higher than that of YDC (4.6 × 10−2 S/cm). The YSB addition can improve the ionic conductivity of YDC in 500°C–750°C and decrease its sintering temperature.  相似文献   

17.
《Ceramics International》2015,41(8):9239-9243
BaO–CaO–Al2O3–B2O3–SiO2 (BCAS) glass–ceramics can be used as sealant for large size planar anode-supported solid oxide fuel cells (SOFCs). BCAS glass–ceramics after heat treatment for different times were characterized by means of thermal dilatometer, X-ray diffraction (XRD) and scanning electron microscopy (SEM). The results show that the coefficients of thermal expansion (CTE) of BCAS glass–ceramics are 11.4×10−6 K−1, 11.3×10−6 K−1 and 11.2×10−6 K−1 after heated at 750 °C for 0 h, 50 h, and 100 h, respectively. The CTE of BCAS matches that of YSZ, Ni–YSZ and the interconnection of SOFC. Needle-like barium silicate, barium calcium silicate and hexacelsian are crystallized in the BCAS glass after heat-treatment for above 50 h at 750 °C. The glass–ceramics green tape prepared by aqueous tape casting can be directly applied in sealing the cell of SOFCs with 10 cm×10 cm. The open circuit voltage (OCV) of the cell keeps 1.19 V after running for 280 h at 750 °C and thermal cycling 10 times from 750 °C to room temperature. The maximum power density is 0.42 W/cm2 using pure H2 as fuel and air as oxidation gas. SEM images show no cracks or pores exist in the interface of BCAS glass–ceramics and the cell.  相似文献   

18.
《Ceramics International》2016,42(5):6391-6398
Dual-phase ceramic membranes composed of BaCe0.8Y0.2O3 (BCY) and Ce0.8Y0.2O2 (CYO) were successfully synthesized by solid state reaction method for hydrogen permeation. The influences of the BCY/CYO volume ratios on phase composition, microstructure, chemical stability and electrical property were investigated. The hydrogen permeation of the dual-phase composite was characterized as a function of temperature and feed side hydrogen partial pressure. The results showed that there was no reaction between the two constituent oxides observed under the preparation conditions. The dual-phase composite with different BCY/CYO volume ratios after sintering at 1550 °C exhibited dense structure, as well as good stability in 4% H2/Ar, wet Ar and pure CO2 atmosphere. The conductivity of the dual-phase composite increased with the content of CYO increasing and 30BCY–70CYO exhibited the highest total conductivity of 2.6×10−2 S cm−1 at 800 °C in 4% H2/Ar. The hydrogen permeability of 30BCY–70CYO sample was improved as the temperature and the hydrogen partial pressure in feed gas increased. The hydrogen permeation flux of 1.7 μmol cm−2 s−1 was achieved at 850 °C.  相似文献   

19.
Tailoring the structure and properties of materials using the high-entropy (HE) effect is of significant interest in the fields of environmental and thermal barrier coatings (TBCs). In this work, a new class of dense HE rare-earth niobates was successfully prepared by a solid-phase reaction method, including (Sm1/5Dy1/5Ho1/5Er1/5Yb1/5)NbO4 (5HERN), (Sm1/6Dy1/6Ho1/6Er1/6Yb1/6Lu1/6)NbO4 (6HERN), (Sm1/7Dy1/7Ho1/7Er1/7Yb1/7Lu1/7Gd1/7)NbO4 (7HERN), and (Sm1/8Dy1/8Ho1/8Er1/8Yb1/8Lu1/8Gd1/8Tm1/8)NbO4 (8HERN), along with eight single rare-earth niobates (RENbO4, RE = Sm, Dy, Ho, Er, Yb, Lu, Gd, and Tm). X-ray diffraction analysis showed that 5–8HERN are single-phase solid solutions with a monoclinic structure (space group C12/c1). The thermal expansion coefficients of 7HERN and 8HERN exceed 11 × 10−6 K−1 at 1200°C and are much higher than those of the RENbO4 compositions (10.13–10.74 × 10−6 K−1) and other some HE rare-earth oxides (10.27–10.87 × 10−6 K−1). Importantly, 5–8HERN have lower oxygen-ion conductivity and higher activation energy than yttrium-stabilized zirconia (YSZ) and the RENbO4 compositions. The oxygen-ion conductivity of 5HERN (7.52 × 10−7 S cm−1, 900°C) was 105 times lower than that of YSZ (0.01 S cm−1, 750°C). The hardness of 5–8HERN is ∼7.81–8.46 GPa and these compositions have low intrinsic lattice thermal conductivity at high temperature (1.28–1.69 W m−1 K−1 at 900°C). The mechanism by which the HE effect improved the material properties was elucidated. Young's modulus, hardness, thermal expansion coefficient, and intrinsic lattice thermal conductivity are linearly related to the mass, size, and distortion degree of samples. In contrast, the oxygen-ion conductivity depends on both the degrees of disorder and distortion and the oxygen-ion vacancy concentration. Based on their overall performance, especially their high thermal expansion coefficients and excellent oxygen-barrier performance, HE rare-earth niobates show potential for further development as TBC materials.  相似文献   

20.
《Ceramics International》2021,47(24):34568-34574
Doped CaZrO3 proton conductors are promising materials for electrochemical hydrogen sensors, which have already been used in commercialized hydrogen sensors for aluminum melts. Hafnium and Zirconium possess similar properties but their influences on conductive properties of CaZrO3 proton conductors have not been well investigated. In this study, CaZr0.9Sc0.1O2.95 and CaHf0.9Sc0.1O2.95 were prepared by solid-state reaction, and their conductivities and transport properties were systematically investigated by defect equilibria model. Total conductivities of CaZr0.9Sc0.1O2.95 and CaHf0.9Sc0.1O2.95 reached 4.70 × 10−5−1.69 × 10−3 S·cm−1 and 4.83 × 10−6−9.71 × 10−4 S·cm−1 under humid air and 400 °C−800 °C. Their total standard molar hydration enthalpies were estimated to −59.1 kJ/mol and −56.9 kJ/mol, respectively. Conductivities of grain interiors were higher than those of total conductivities, and activation energies of protons were lower than oxide vacancies and holes. Transport numbers showed protonic conduction of Ca(Zr/Hf)0.9Sc0.1O2.95 to always dominate under humid air at 400 °C−700 °C. Protonic transport numbers of CaZr0.9Sc0.1O2.95 and CaHf0.9Sc0.1O2.95 were estimated to 0.41 and 0.44 at 800 °C, respectively. Meanwhile, protonic transport number of grain interiors was higher than that of total sample. Therefore, grain interior could block the transfer of oxide vacancies and holes. In sum, these findings look promising for application on electrochemical hydrogen sensors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号