首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel technique to simultaneously lower the synthesis temperature of high-entropy carbides and maintain their high mechanical properties was proposed. Certain amount of carbon vacancies was first introduced to significantly lower the temperature down to 2000°C for uniform elemental distributions in high-entropy carbides. Those carbon vacancies were then fully eliminated through the reaction between high-entropy carbides and certain amount of boron carbide. Concomitantly, the high-entropy boride phase was formed. The elimination of carbon vacancies and the formation of high-entropy boride phase significantly improved the mechanical properties of the high-entropy carbides. A high mechanical strength over 500 MPa can be obtained by phase optimization.  相似文献   

2.
The mechanical properties of a nominally phase pure ZrB2 ceramic were measured up to 2300°C in an argon atmosphere. ZrB2 was hot pressed at 2000°C utilizing borothermally synthesized powder from high purity ZrO2 and B raw materials. The relative density of the ceramics was about 95% with an average ZrB2 grain size of 8.8 µm. The room temperature flexural strength was 447 MPa, with strength decreasing to 196 MPa at 1800°C, and then increasing to 360 MPa at 2300°C. The strength up to 1800°C was likely controlled by a combination of effects: surface damage from oxidation of the specimens, stress relaxation, and decreases in the elastic modulus. The strength above 1800°C was controlled by flaws in the range consistent with sizes of the maximum ZrB2 grain size and the largest pores. Fracture toughness was 2.3 MPa·m1/2 at room temperature, increasing to 3.1 MPa·m1/2 at 2200°C. The use of higher purity starting materials improved the mechanical behavior in the ultra-high temperature regime compared to previous studies.  相似文献   

3.
Dense high-entropy (Hf,Zr,Ti,Ta,Nb)B2 ceramics with Nb contents ranging from 0 to 20 at% were produced by a two-step spark plasma sintering process. X-ray diffraction indicated that a single-phase with hexagonal structure was detected in the composition without Nb. In contrast, two phases with the same hexagonal structure, but slightly different lattice parameters were present in compositions containing Nb. The addition of Nb resulted in the presence of a Nb-rich second phase and the amount of the second phase increased as the Nb content increased. The relative densities were all >99.5 %, but decreased from ~100 % to ~99.5 % as the Nb content increased from 0 to 20 at%. The average grain size decreased from 13.9 ± 5.5 μm for the composition without Nb additions to 5.2 ± 2.0 μm for the composition containing 20 at% Nb. The reduction of grain size with increasing Nb content was due to the suppression of grain growth by the Nb-rich second phase. The addition of Nb increased Young’s modulus and Vickers hardness, but decreased shear modulus. While some Nb dissolved into the main phase, a Nb-rich second phase was formed in all Nb-containing compositions.  相似文献   

4.
(HfTaZrNbTi)C5 high-entropy ceramic (HEC) brazed joint was obtained with TiNi-Nb alloy and the brazing seam was primarily filled by TiNi + Nb eutectic microstructure. The highest shear strength of the joint obtained under the condition of 1220 °C/10 min reached 167 MPa and 137 MPa at room temperature and 800 °C, respectively. Moreover, the high-temperature stability of the brazed joint was investigated by air oxidation testing at 800 °C. Compared to the HEC, the TiNi + Nb eutectic microstructure in the brazing seam exhibited superior oxidation resistance. After oxidation for four hours, the joint shear strength still maintained 100 MPa, while it was reduced to 22 MPa after oxidation for eight hours due to the dramatic damage of the HEC. The results showed that the brazed HEC joint possessed high shear strength at an elevated temperature of 800 °C for four hours although the high-temperature endurance of the joint was weak.  相似文献   

5.
ZrB2 ceramics were prepared by in-situ reaction hot pressing of ZrH2 and B. Additions of carbon and excess boron were used to react with and remove the residual oxygen present in the starting powders. Additions of tungsten were utilized to make a ZrB2-4 mol%W ceramic, while a change in the B/C ratio was used to produce a ZrB2-10 vol% ZrC ceramic. All three compositions reached near full density. The baseline ZrB2 and ZrB2–ZrC composition contained a residual oxide phase and ZrC inclusions, while the W-doped composition contained residual carbon and a phase that contained tungsten and boron. All three compositions exhibited similar values for flexure strength (~520 MPa), Vickers hardness (~15 GPa), and elastic modulus (~500 to 540 GPa). Fracture toughness was about 2.6 MPa m1/2 for the W-doped ZrB2 compared to about 3.8 MPa m½ for the ZrB2 and ZrB2–ZrC ceramics. This decrease in fracture toughness was accompanied by an observed absence of crack deflection in the W-doped ZrB2 compared with the other compositions. The study demonstrated that reaction-hot-pressing can be used to fabricate ZrB2 based ceramics containing solid solution additives or second phases with comparable mechanical properties.  相似文献   

6.
High-entropy ceramics (HEC) with a fixed composition of (VNbTaMoW)C5 were prepared by spark plasma sintering (SPS) from 1500 °C to 2200 °C. XRD, TEM, HRTEM, SAED and EDX were used to investigate effects of the sintering temperatures on compositional homogeneity, constituent phases and microstructure of the HECs. The results showed that single-phase HEC formed at a temperature as low as 1600 °C while ultimate elemental distribution homogeneity could be obtained at 2200 °C. Elemental distribution homogenization was accompanied by microstructural coarsening and oxide impurities aggregating at grain boundaries as temperature increased. SPS at 1900 °C for 12 min could yield uniform HECs (VNbTaMoW)C5 with Vickers hardness, nanohardness, fracture toughness and Young’s modulus reaching 19.6 GPa, 29.7 GPa, 5.4 MPa m1/2 and 551 GPa, respectively. The resultant HECs showed excellent wear resistance when coupled with WC at room temperature.  相似文献   

7.
In this contribution, the ternary BCN anion systems of high-entropy ceramics (HEC) are consolidated by hot-pressing sintering and the impacts of sintering temperature and the content of amorphous BCN addition on microstructural evolution and mechanical performance were evaluated. Results confirmed that high-entropy, oxide, and BN(C) phases were precipitated for (Ta0.2Nb0.2Zr0.2Hf0.2Ti0.2)(B, C, N) ceramics after sintering at 1900°C. With the decrease of BCN addition, a new phase of MiB2 (Mi representing the metal atoms) occurred. The Vickers hardness, bending strength, elastic modulus, and fracture toughness of the optimized bulk HECs were investigated, obtained at 24.5 ± 2.3 GPa, 522.0 ± 2.6 MPa, 478.9 ± 11.1 GPa, and 5.36 ± 0.56 MPa m1/2, respectively.  相似文献   

8.
Polycrystalline Fe2AlB2 bulk including minor Al2O3 is synthesized by reactive hot pressing from Fe, Al, and B powders at 1200°C and 30 MPa for 30 minutes, with a relative density of 96%. The present approach enables a markedly reduced holding time compared with previous studies. The derived Fe2AlB2 shows an electrical resistivity of 2.27±0.01 μΩ·m, Vickers hardness of 10.2±0.2 GPa, flexural strength of 232±25 MPa, compressive strength of 2101±202 MPa, fracture toughness of 5.4±0.2 MPa·m1/2 and work of fracture of 117±12 J/m2. No dominant indentation cracks are observed, indicating that Fe2AlB2 may be quite damage tolerant. Interestingly, a noncatastrophic failure is present in the SENB test, with a high work of fracture. The energy‐absorbing mechanisms in inhibiting crack formation are delamination and pullout of Fe2AlB2 grains.  相似文献   

9.
A new high-entropy diboride (Hf0.25Zr0.25Ta0.25Sc0.25)B2 was designed to investigate the effect of introducing rare-earth metal diboride ScB2 into high-entropy diborides on its structure and properties. The local mixing enthalpy predicts that (Hf0.25Zr0.25Ta0.25Sc0.25)B2 has high enthalpy driving force, which more easily allows the formation of single-phase AlB2-type structures between components. The experiments further demonstrate that (Hf0.25Zr0.25Ta0.25Sc0.25)B2 possesses excellent phase stability, lattice integrity and nanoscale chemical homogeneity. (Hf0.25Zr0.25Ta0.25Sc0.25)B2 showed relatively high hardness (30.7 GPa), elastic modulus (E, G, and B of 522, 231 and 233 GPa, respectively), bending strength (454 MPa), and low thermal conductivity (13.9 W·m?1·K?1). The thermal expansion of (Hf0.25Zr0.25Ta0.25Sc0.25)B2 is higher than that of ZrB2 and HfB2 due to weakened bonding (M d - B p and M dd bonding) and enhanced anharmonic effects. Thus, incorporating Sc into high-entropy diborides can tailor the properties associated with the bonding, which further expands the compositional space of high-entropy diborides.  相似文献   

10.
Emerging of high-entropy ceramics has brought new opportunities for designing and optimizing materials with desired properties. In the present work, high-entropy rare-earth zirconates (La0.2Nd0.2Sm0.2Eu0.2Gd0.2)2Zr2O7 and (Yb0.2Nd0.2Sm0.2Eu0.2Gd0.2)2Zr2O7 are designed and synthesized. Both high-entropy ceramics exhibit a single pyrochlore structure with excellent phase stability at 1600 °C. In addition, the Yb-containing system possesses a high coefficient of thermal expansion (10.52 × 10?6 K-1, RT~1500 °C) and low thermal conductivity (1.003 W·m-1 K-1, 1500 °C), as well as excellent sintering resistance. Particularly, the Yb-containing system has significantly improved fracture toughness (1.80 MPa·mm1/2) when compared to that of lanthanum zirconate (1.38 MPa·mm1/2), making it a promising material for thermal barrier coatings (TBCs) applications. The present work indicates that the high-entropy design can be applied for further optimization of the comprehensive properties of the TBCs materials.  相似文献   

11.
Starting from metal oxides, B4C and graphite, a suite of high-entropy boride ceramics, formulated (Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)B2, (Hf0.2Zr0.2Mo0.2Nb0.2Ti0.2)B2 and (Hf0.2Mo0.2Ta0.2Nb0.2Ti0.2)B2 derived from boro/carbothermal reduction at 1600 °C were fabricated by spark plasma sintering at 2000 °C. It was found that the synthetic high-entropy boride crystalized in hexagonal structure and the yield of the targeting phase was calculated to be over 93.0 wt% in the sintered ceramics. Benefitting from the nearly full densification (96.3% ˜ 98.5% in relative density) and the refined microstructure, the products exhibited the relatively high Vickers hardness. The indentation fracture toughness was determined to be comparable with the single transition metal-diboride ceramics. It should be noted that the formation of high-entropy boride ceramics were featured with the relatively high hardness at no expense of the fracture toughness.  相似文献   

12.
The narrow composition design space of high-entropy transition metal diborides (HE TMB2) limits their further development. In this study we designed six quaternary and quinary high-entropy transition metal and rare-earth diborides (HE TMREB2) and investigated their phase stability using the energy distribution of the local mixing enthalpy of all possible configurations. The results show that both quaternary and quinary HE TMREB2 have higher enthalpic driving forces, which facilitates the formation of single-phase AlB2-type structures between TMB2 and REB2. Calculations of elastic constants show that the TMB2 component has the greatest effect on the c44 elastic constant and shear modulus G, while REB2 significantly influences the bulk modulus B. Furthermore, LuB2 and TmB2 substantially affect the elastic modulus anisotropy of HE TMB2. Rare-earth atoms in HE TMREB2 can enhance the nonharmonic interactions between phonons, which results in a significant hindrance in the thermal transport of low-frequency phonons as well as an increase in the volume thermal expansion coefficients. Thus, the incorporation of REB2 into HE TMB2 has a significant impact on the phase stability and properties.  相似文献   

13.
First principles calculations were conducted on (HfTiWZr)B2 high entropy diboride (HEB) composition, which indicated a low formation energy and promising mechanical properties. The (HfTiWZr)B2 HEBs were synthesized from the constituent borides and elemental boron powders via high energy ball milling and spark plasma sintering. X-ray diffraction analyses revealed two main phases for the sintered samples: AlB2 structured HEB phase and W-rich secondary phase. To investigate the performance of multi-phase microstructures containing a significant percentage of the HEB phase was focused in this study. The highest microhardness, nanohardness, and lowest wear volume loss were obtained for the 10 h milled and 2050 °C sintered sample as 24.34 ± 1.99 GPa, 32.8 ± 1.9 GPa and 1.41 ± 0.07 × 10?4 mm3, respectively. Thermal conductivity measurements revealed that these multi-phase HEBs have low values varied between 15 and 23 W/mK. Thermal gravimetry measurements showed their mass gains below 2% at 1200 °C.  相似文献   

14.
Ceramic materials with high strength, toughness, and excellent impact resistance are urgently required for many structural applications, but these mechanical properties are difficult to achieve in traditional ceramic tiles due to their inherent brittleness. Inspired by the specific structure of shells, the multilayered ceramic tile/Kevlar fabric composite with a bio-inspired shell structure was successfully fabricated via a surface hydroxylation followed by simple hot press process. It is found that the composites have representative step-like fracture behaviors rather than brittle fracture, which has been proven to possess a better ability of mechanical performance and noncatastrophic failure behavior compared to same-thickness ceramic tile. Specifically, the bending strength, fracture toughness, and fracture work of the composite with a 15-tier structure come to 836.5 ± 12.5 MPa, 14.6 ± .2 MPa·m1/2, and 7228.8 ± 108.4 J·m1/2, which are even better than those of reported advanced materials. Such fracture-resistant behaviors are correspondent to the strengthening effects of the crack deflection, interfacial debonding, and fiber pull out, accompanied by bio-inspired structure and appropriate bonding state between brittle or ductile layers. This resin or fabric content can be used as well as the slip systems to transfer the internal stress in time to consume more fracture energy per unit length and prevent risky brittle fracture, while carrying loads. We expect these findings to provide vital guidance for promoting the applications of traditional ceramics in bio-inspired high-performance composites for actual ceramic manufacturers.  相似文献   

15.
(Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)C high-entropy ceramics (HEC) with a submicron grain size of 400 to 600 nm were fabricated by spark plasma sintering using a two-step sintering process. Both X-ray and neutron diffractions confirmed the formation of single-phase with rock salt structure in the as-fabricated (Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)C samples. The effect of submicron grain size on the thermal stability and mechanical properties of HEC was investigated. The grain growth kinetics in the fine-grained HEC was small at 1300 and 1600°C, suggesting high thermal stability that was possibly related to the compositional complexity and sluggish diffusion in HEC. Compared to the coarse-grain HEC with a grain size of 16.5 µm, the bending strength and fracture toughness of fine-grained HEC were 25% and 20% higher respectively. The improvement of mechanical properties in fine-grained HEC may be attributed to micromechanistic mechanisms such as crack deflection.  相似文献   

16.
《Ceramics International》2022,48(10):14295-14300
In this work, a TiB/TiAl/α-Ti layered composite material has been obtained by unrestricted SHS compression using titanium, boron, and aluminum as the initial components. It has been found that combustion and subsequent high-temperature shear deformation (thermal and mechanical conditions of unrestricted SHS compression) results in composite ceramic (TiB/Ti) and intermetallic (TiAl, Ti3Al) macrolayers to be oriented along the direction of material flow and perpendicularly to the applied load. It is shown that the synthesis of the material proceeds according to the solid/liquid-phase mechanism. The mechanical characteristics of the obtained layered composite material have been studied, namely hardness, microhardness, and fracture toughness. The mechanism of crack propagation has been established and the dependence of the values of the stress intensity factor on the orientation of microvolumes in the material has been determined.  相似文献   

17.
A series of (TiZrHfVNbTa)C high-entropy ceramics with different vanadium contents have been fabricated by pressureless sintering at 2300 °C–2500 °C for 1 h, utilizing self-synthesized carbide powders obtained by carbothermal reduction. The addition of vanadium is beneficial to promote densification process and refine grain, as well as facilitate the homogeneous distribution of metal elements. The distribution of pores is also modified, almost entirely existing at grain boundary, and the integral mechanical properties achieve optimization. However, excess adding vanadium does not favor forming a single-phase (TiZrHfVNbTa)C high-entropy ceramic. The optimal (TiZrHfVNbTa)C high-entropy ceramic sintered at 2300 °C possesses a high relative density of 97.5 % and homogeneous microstructure with small grain size of 1.2 μm. The flexural strength and Vickers hardness reach 473 MPa and 24.9 GPa, respectively. This work has established a cost-effective and convenient preparation of novel (TiZrHfVNbTa)C high-entropy carbide ceramics.  相似文献   

18.
Multicomponent transition metal boride composite–sintered bodies were prepared by spark plasma sintering, and the composite sintered bodies prepared at different sintering temperatures (1500–1900°C) were characterized. The experimental results showed that several other compounds diffused into the TiBx phase at lower sintering temperatures under the combined effect of temperature and pressure due to the nonstoichiometric ratio of TiB1.5 vacancies. When the temperature reached 1900°C, only the hexagonal phase remained. With the continuous increase of sintering temperature, the Vickers hardness and fracture toughness of the sintered bodies had a trend of increasing first and then decreasing, due to the continuous reduction of the porosity of the cross section of the sintered bodies and the growth of the grain size. The Vickers hardness and fracture toughness of sintered body obtained at 1800°C are the best, which are 24.4 ± 1.8 GPa and 5.9 ± 0.2 MPa m1/2. At 1900°C, the sintered body was a single-phase hexagonal high-entropy diboride. Its Vickers hardness and fracture toughness were 21.9 ± 1.5 GPa and 5.4 ± 0.2 MPa m1/2, respectively; it showed a clear downward trend.  相似文献   

19.
A novel methodology combining multiscale mechanical testing and finite element modeling is proposed to quantify the sintering temperature‐dependent mechanical properties of oxide matrix composites, like aluminosilicate (AS) fiber reinforced Al2O3 matrix (ASf/Al2O3) composite in this work. The results showed a high‐temperature sensitivity in the modulus/strength of AS fiber and Al2O3 matrix due to their phase transitions at 1200°C, as revealed by instrumented nanoindentation technique. The interfacial strength, as measured by a novel fiber push‐in technique, was also temperature‐dependent. Specially at 1200°C, an interfacial phase reaction was observed, which bonded the interface tightly, as a result, the interfacial shear strength was up to ≈450 MPa. Employing the measured micro‐mechanical parameters of the composite constituents enabled the prediction of deformation mechanism of the composite in microscale, which suggested a dominant role of interface on the ductile/brittle behavior of the composite in tension and shear. Accordingly, the ASf/Al2O3 composite exhibited a ductile‐to‐brittle transition as the sintering temperature increased from 800 to 1200°C, due to the prohibition of interfacial debonding at higher temperatures, in good agreement with numerical predictions. The proposed multiscale methodology provides a powerful tool to study the mechanical properties of oxide matrix composites qualitatively and quantitatively.  相似文献   

20.
BN-nanoparticle-containing SiC-matrix-based composites comprising SiC fibers and lacking a fiber/matrix interface (SiC/BN + SiC composites) were fabricated by spark plasma sintering (SPS) at 1800°C for 10 min under 50 MPa in Ar. The content of added BN nanoparticles was varied from 0 to 50 vol.%. The mechanical properties of the SiC/BN + SiC composites were investigated thoroughly. The SiC/BN + SiC composites with a BN nanoparticle content of 50 vol.%, which had a bulk density of 2.73 g/cm3 and an open porosity of 5.8%, exhibited quasiductile fracture behavior, as indicated by a short nonlinear region and significantly shorter fiber pullouts owing to the relatively high modulus. The composites also exhibited high strength as well as bending, proportional limit stress, and ultimate tensile strength values of 496 ± 13, 251 ± 30, and 301 MPa ± 56 MPa, respectively, under ambient conditions. The SiC fibers with contents of BN nanoparticles above 30 vol.% were not severely damaged during SPS and adhered to the matrix to form a relatively weak fiber/matrix interface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号