首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
C/C多孔体对C/C-SiC复合材料微观结构和弯曲性能的影响   总被引:2,自引:0,他引:2  
以4种纤维含量相同(32%,体积分数,下同),用化学气相渗透(chemical vapor infiltration,CVI)法制备了4种密度的碳纤维增强碳(carbon fiber reinforced carbon,C/C)多孔体,基体炭含量约20%~50%.利用液相渗硅法(liquid silicon infiltration,LSI)制备了C/C-SiC复合材料,研究了C/C多孔体对所制备的C/C-SiC复合材料微观结构和弯曲性能的影响.结果表明:不同密度的C/C多孔体反应渗硅后,复合材料的物相组成均为SiC,C及单质Si;随着C/C多孔体中基体炭含量的增加,C/C-SiC复合材料中SiC含量逐渐减少而热解炭含量逐渐增加.C/C-SiC复合材料弯曲强度随着材料中残留热解炭含量增加而逐渐增加,热解炭含量为约42%的C/C多孔体所制备的C/C-SiC复合材料的弯曲强度最大,达到320 MPa.  相似文献   

2.
Carbon fiber reinforced SiC composite is a kind of promising high-temperature thermal protection structural material owing to the excellent oxidative resistance and superior mechanical properties at high temperatures. In this work, a novel design and fabrication process of lightweight C/SiC corrugated core sandwich panel will be proposed. The compressive and three-point bending of the C/SiC corrugated sandwich panels are conducted by experiment and numerical simulation. The relative density of as-prepared C/SiC sandwich panel and the density composite material are 1.1 and 2.1 g/cm3, respectively. As the density of the C/SiC sandwich panel is only 52.3% of the bulk C/SiC, suggesting that lightweight characteristic is realized. Moreover, the C/SiC sandwich panel manifests itself as linear-elastic behavior before failure in compression and the strength is as high as 15.1 MPa. The failure mode is governed by the core shear failure and panel interlayer cracking. The load capacity under the three-point bending C/SiC composite sandwich panel is 1947.0 N. The main failure behavior is core shear failure. The stress distribution under the compression and three-point bend was simulated by FE analysis, and the results of numerical simulations are in accordance with the experimental results.  相似文献   

3.
Sandwich panels with aluminium foam core and fibre–metal laminate (FML) skins for enhanced impact resistance have been designed and manufactured during this research activity. The FML skins are made of a combination of aluminium sheets and E-glass fibre/epoxy-laminated plies. Drop-weight impact tests are conducted on two groups of sandwich panels with aluminium foam core bonded to the aluminium sheet in Group 1 panels, and aluminium foam core bonded to the E-glass/epoxy ply in Group 2 panels to allow an investigation of the bonding capability between the aluminium foam and the FML skins under impact and the impact resistance of the sandwich panels. The delamination and debonding ranges, the maximum deformed height in the impact area are measured and the deformed volumes of the sandwich panels after drop-weight tests are evaluated. via comparison of these parameters for the two groups of sandwich panels, it is found that the bonding between aluminium foam to the E-glass/epoxy surface provides a better resistance to impact than that between aluminium foam bonded to the aluminium sheet of the FML facing, and that overall Group 2 panels exhibit better bonding capability and impact resistance with less facing delamination and core/facing debonding than the Group 1 panels.  相似文献   

4.
基于有限元仿真和实验,对格栅增强夹芯板弯曲刚度的影响因素及规律开展了研究。首先,针对格栅结构对夹芯板抗弯特性的影响进行仿真分析,认为格栅结构能够较为显著地提高夹芯板的抗弯刚度;其次,针对格栅增强夹芯板的蒙皮纤维铺层角度、格栅密度等几个重要参数对其弯曲刚度的影响进行仿真计算并对其规律进行分析;最后,通过实验验证了仿真的准确性。分析结果表明,夹芯板蒙皮纤维±45°铺设时夹芯板具有最优的抗弯刚度,且在格栅总体积即含筋量一定的情况下,一定范围内降低单层格栅的厚度以增加格栅的密度会大幅度提高夹芯板的抗弯刚度。  相似文献   

5.
Adhesively bonded T-joints are extensively used in assembling sandwich structures. The advantage of adhesive bonded joints over bolted or riveted joints is that the use of fastener holes in mechanical joints inherently results in micro and local damages to the composite laminate during their fabrication. One type of adhesive joint in such structures is the T-joint between sandwich panels. The aim of this research paper is to study, by numerical analysis, the effect of fillet geometry and core material of sandwich panels on the performance of T-joints. The base angle of the core triangle (fillet) is the most important geometry parameter of the triangular T-joint. Nine geometrical models with different base angles of the core triangle are made to investigate the effect of the base angle on the performance of the T-joints. It should be mentioned that the base angle in the triangular foam is changed, so that the final volume of the filler is kept constant in all the cases. Different foams with different stiffness are used to model the core of the panels to study the effect of the core material of sandwich panels. To model the adhesive between joint components, contact elements and cohesive zone material models are used. Therefore, failure of adhesive and separation of joint elements can be modeled. Damage and core shear failure of the base panel are modeled by using a written macro-code in the ANSYS finite element method (FEM) program. The ultimate strength of the joint in each case is calculated by modeling adhesive failure and core shear failure of the sandwich panels. Finally, the results of FEM are validated by experimental results available in the literature. In general, the failure load predicted by the FEM is within 5% of the experimental results. The best angle of the core triangle was found to be 45°. Also, the results showed that by changing the core material of the sandwich panel, the joint failure load is also changed.  相似文献   

6.
The mechanical and fracture properties of injection molded short glass fiber)/short carbon fiber reinforced polyamide 6 (PA 6) hybrid composites were studied. The short fiber composites of PA 6 glass fiber, carbon fiber, and the hybrid blend were injection molded using a conventional machine whereas the two types of sandwich skin–core hybrids were coinjection molded. The fiber volume fraction for all formulations was fixed at 0.07. The overall composite density, volume, and weight fraction for each formulation was calculated after composite pyrolysis in a furnace at 600°C under nitrogen atmosphere. The tensile, flexural, and single‐edge notch‐bending tests were performed on all formulations. Microstructural characterizations involved the determination of thermal properties, skin–core thickness, and fiber length distributions. The carbon fiber/PA 6 (CF/PA 6) formulation exhibits the highest values for most tests. The sandwich skin‐core hybrid composites exhibit values lower than the CF/PA 6 and hybrid composite blends for the mechanical and fracture tests. The behaviors of all composite formulations are explained in terms of mechanical and fracture properties and its proportion to the composite strength, fiber orientation, interfacial bonding between fibers and matrix, nucleating ability of carbon fibers, and the effects of the skin and core structures. Failure mechanisms of both the matrix and the composites, assessed by fractographic studies in a scanning electron microscope, are discussed. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 97: 957–967, 2005  相似文献   

7.
Sandwich structured composites have been widely studied and applied at ambient temperature in aeronautical, automobile and naval applications. For high temperature applications, an integrated ceramic sandwich structure could take advantage of multiple functions such as skin stiffness and core insulation. For thermo-structural applications, skins must be made of ceramic matrix composites (CMC) because of their strength, their resistance to high temperatures (beyond 1000 °C), and their low densities. Concerning foam cores, some carbides (e.g. SiC) are, for their outstanding thermo-mechanical properties, the most appropriate. These foams can withstand long oxidative exposing conditions with low material degradation. This paper presents an assembly method of SiC based sandwich structured CMC. It is performed during sandwich manufacturing in an integrated fashion and allows the production of complex shapes at low costs. Produced flat sandwich panels, characterized by three point bending tests, showed a marked toughening behaviour.  相似文献   

8.
Carbon/Carbon (C/C) composites derived from the thermoplastic polymer polyetherimide (PEI) were pyrolized up to 1000 °C, subsequently carbonized in inert atmosphere up to 2200 °C and afterwards infiltrated with liquid silicon. The investigation of fibers and matrix with Raman microspectroscopy revealed, that an increased carbonization temperature leads to an increased carbon order as well as an incipient stress-induced graphitization of the carbon matrix close to the fiber surfaces at 2200 °C. The derived C/C-SiC samples show a maximum flexural strength of 180 MPa with C/C composites treated at 2000 °C and monotonically increasing Young’s moduli ranging from 49 GPa with C/C preforms treated at 1600 °C up to 59 GPa after carbonization at 2200 °C. The carbon fiber strength was evaluated with a single fiber tensile test, which showed a monotonically increased Young’s modulus and a decrease of the strength after carbonization at 2200 °C.  相似文献   

9.
采用机械缝合设备连续制备了"X"型构型缝合增强泡沫夹芯结构预成型体,并采用真空导入模塑工艺(VIMP)整体成型了缝合增强泡沫夹芯结构复合材料。实验研究了面板纤维布层数、面板纤维布穿透缝合层数、缝合角度、缝合针距及纱线股数对缝合增强泡沫夹芯结构复合材料弯曲性能和平压性能的影响规律。实验结果表明:与未缝合结构相比,缝合结构在质量未明显增加的情况下,弯曲性能和压缩性能得到了显著提高,其弯曲刚度最大提高了4.66倍,破坏载荷最大提高了13.8倍;压缩强度和压缩模量最大分别提高了26.2倍和15.2倍。  相似文献   

10.
Through‐thickness polymer pin–reinforced foam core sandwich (FCS) panels are new type of composite sandwich structure as the foam core of this structure was reinforced with cylindrical polymer pins, which also rigidly connect the face sheets. These sandwich panels are made of glass fiber–reinforced polyester face sheets and closed‐cell polyurethane foam core with cylindrical polymer pins produced during fabrication process. The indentation and compression behavior of these sandwich panels were compared with common traditional sandwich panel, and it has been found that by reinforcing the foam core with cylindrical polymer pins, the indentation strength, energy absorption, and compression strength of the sandwich panels were improved significantly. The effect of diameter of polymer pins on indentation and compression behavior of both sandwich panels was studied and results showed that the diameter of polymer pins had a large influence on the compression and indentation behavior of through‐thickness polymer pin–reinforced FCS panel, and the effect of adding polymer pins to FCS panel on indentation behavior is similar to the effect of increasing the thickness of face sheet. The effect of strain rate on indentation behavior of FCS panel and through‐thickness polymer pin–reinforced FCS panel were studied, and results showed that both types of composite sandwich panels are strain rate dependent structure as by increasing strain rate, the indentation properties and energy absorption properties of these structures are increased. POLYM. COMPOS., 37:612–619, 2016. © 2014 Society of Plastics Engineers  相似文献   

11.
A comparative study of the crystallization and orientation development in injection molding isotactic and syndiotactic polypropylenes was made. The injection molded samples were characterized using wide angle X‐ray diffraction (WAXD) techniques and birefringence. The injection molded isotactic polypropylene samples formed well‐defined sublayers (skin, shear and core zones) and exhibited polymorphic crystal structures of the monoclinic α‐form and the hexagonal β‐form. Considerable amounts of β‐form crystal were formed in the shear and core zones, depending on the injection pressure or on the packing pressure. The isotactic polypropylene samples had relatively high frozen‐in orientations in the skin layer and the shear zone. The injection molded syndiotactic polypropylene exhibited the disordered Form I structure, but it did not appear to crystallize during the mold‐filling stage because of its slow crystallization rate and to develop a distinct shear zone. The core zone orientation was greatly increased by application of high packing pressure. The isotactic polypropylene samples exhibited much higher birefringence than the syndiotactic polypropylene samples at the skin and shear layers, whereas both materials exhibited similar levels of crystalline orientation in these layers.  相似文献   

12.
Ruiying Luo 《Carbon》2002,40(11):1957-1963
Carbon/carbon composites are manufactured using the electrified preform producing directly heat CVI process. The preforms are prepared by laminating the carbon fiber felts with crossply reinforcement, and infiltrated with carbon using natural gas or propylene as a reactant, with nitrogen as diluent at atmospheric pressure. The relations between the resistivity of samples and infiltration time are determined under the operating conditions. The results indicate that the preforms have gained a high infiltration rate by this technology, and the samples have higher densities using natural gas rather than propylene. Their highest average bulk densities are up to 1.71 g/cm3 after the preforms of 1100×500×35 mm size have been densified for 80 h using natural gas. The carbon fibres in the preforms have not been damaged by this technology as yet, and the composites prepared have sufficiently high flexural properties. As the brake angular velocity is increased with the constant brake moment inertia and specific pressure, the average coefficient of friction for the composites prepared using natural gas is linearly and greatly decreased, but the variations of the brake moment inertia have a slight influence on the average coefficient of the friction when the brake angular velocity and specific pressure are kept constant. Their average thickness wear is 13×10−4 mm/surface per stop.  相似文献   

13.
C/C-SiC composites were fabricated via Si-Zr reactive alloyed melt infiltration using various C/C preforms with different porosities as reinforcements. The influence of preform porosities on the microstructure, mechanical strength and ablation resistance of the as-prepared composites were investigated. The results indicated that microstructure and properties of the C/C-SiC composites seriously depended on C/C preform porosities. The composites were mainly composed of carbon, SiC and ZrSi2 phases, while some residual silicon still existed in the composites prepared with very large porosity preforms. Flexural strength of the composites firstly increased with increasing C/C preform porosities, then reached the highest value, 307?MPa, and finally turned to decrease with the further increasing of preform porosities. Densities of the composites increased with increasing preform porosities, while open porosities were generally small below 7%. Linear ablation rates of the composites firstly sharply decreased with increasing preform porosities and then slightly decreased to reach a balance value. In a word, C/C preform porosity was of great significance for reactive melt infiltration of C/C-SiC composites. Densities, microstructure, mechanical strength and ablation resistance of the resulting composites should be comprehensively taken into consideration to choose an optimal preform porosity for fabrication of C/C-SiC composites.  相似文献   

14.
本文以厚壁碳纤维复合材料为面板,硬质聚氨酯泡沫为芯材制造复合材料泡沫夹层结构,模拟实际生产过程中容易出现的面板与芯材之间界面的脱粘和界面胶层过厚的现象,采用人工制造试块的方法,研究了超声波探伤对夹层复合材料缺陷的评定方法,解决了实际检测过程中的疑问,为夹层复合材料结构产品的质量检验提供依据。得出了粘接良好区胶层过厚不会被判定为脱粘的结论。  相似文献   

15.
The substrate architecture of carbon-carbon (C/C) composites has an effect on both the mechanical properties and the cost of the products. Four kinds of substrate materials, 1K and 3K plain carbon cloth, carbon paper, and carbon felt, were used in this study, and from them four different 2D preforms were produced, namely, 1K plain carbon cloth, carbon paper+1K plain carbon cloth, carbon felt+1K plain carbon cloth, 3K plain carbon cloth, using a spreading layer method. The preforms were densified using the rapid directional diffused CVI processes. A three-point bend test was used to investigate the influence of preform architecture on the flexural properties and microstructure of the C/C composites. The results show that all samples have an obvious pseudo-plastic fracture behaviour, and the macroscopic appearance of the bent fractured section shows as an Z shape. The samples prepared using 1K plain carbon cloth have a uniform microstructure, and consequently possess the highest flexural strength, while the composites produced from 3K plain carbon cloth possess the lowest value due to their poor microstructure and lower strength fibers. In general the flexural properties of the C/C composites are improved with an increase of the carbon fiber volume fraction in the preform. All the C/C composites manufactured from the four preforms fail by delamination when broken.  相似文献   

16.
This work manufactured sandwich composites from glass fiber/poly(vinyl chloride) (GF/PVC) and wood/PVC layers, and their mechanical and morphological properties of the composites in three GF orientation angles were assessed. The effects of K value (or viscosity index) of PVC and Dioctyl phthalate (DOP) loading were of our interests. The GF/PVC was used as core layer whereas wood/PVC was the cover layers. The experimental results indicated that PVC with low K value was recommended for the GF/PVC core layer for fabrication of GF/WPVC sandwich composites. The improvement of PVC diffusion at the interface between the GF and the PVC core layer was obtained when using PVC with K value of 58. This was because it could prevent de‐lamination between composite layers which would lead to higher mechanical properties of the sandwich composites, except for the tensile modulus. The sandwich composites with 0° GF orientation possessed relatively much higher mechanical properties as compared with those with 45° and 90° GF orientations, especially for the impact strength. Low mechanical properties of the sandwich composites with 45° and 90° GF orientation angles could be overcome by incorporation of DOP plasticizer into the GF/PVC core layer with the recommended DOP loadings of 5–10 parts per hundred by weight of PVC components. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

17.
Abstract

In this study, the compressive behaviour of carbon fibre reinforced plastic quasi-isotropic laminates and sandwich panels with carbon fibre reinforced plastic face sheets and syntactic foam core has been investigated. Experimentally determined open hole strengths have been compared with theoretical predictions obtained by applying a linear cohesive zone model. The unnotched compressive strength has been experimentally determined, and the in-plane fracture toughness has been analytically predicted as input parameters of the model. Buckling phenomena occurred on some specimens, and they have been taken into account. Evaluation of macroscopic failure modes in compression tests on unnotched specimens led to a better understanding on the advantages of the analytical model and on the possibility of applying the model to sandwich structures. The experimental results were in good agreement with the analytical prediction by the Budiansky–Soutis–Fleck cohesive zone model, and the difference between theoretical and experimental open hole strengths of Syncore sandwich panels was <9%.  相似文献   

18.
Disbondings between core and facesheets of sandwich structures can cause severe reductions in their load-bearing capacity and, for reliability and safety, this necessitates the introduction of adequate methods of control. By using holographic interferometry, one of the non-destructive testing methods which could be used in these cases, even the smallest subsurface anomalies in sandwich panels can be made visible under stress, showing them as local irregularities in a fundamental fringe pattern. Good results for fault detection were obtained for specimens which has been stressed or deformed by the application of a partial vacuum to the outside of the specimen, even when the vacuum had been applied prior to — and not during — the holographic measuring procedure. By using this holographic method for testing industrially manufactured sandwich panels — consisting of rigid synthetic foam cores and skins of either glass fibre-reinforced plastics or steel sheets — its high accuracy for detecting even small disbonds, found in the laboratory stage of evaluation, could be verified. The results obtained offer some interesting aspects for future application in quality control and in-service testing of sandwich materials.  相似文献   

19.
3D needle-punched C/C-SiC composites were fabricated from carbon fiber reinforced carbon (C/C) preforms, with densities of 1.05?g/cm3 and 1.28?g/cm3, by the gaseous silicon infiltration (GSI) method at fabrication temperatures from 1500?°C to 1800?°C. The compressive strengths and elastic moduli in transverse direction are larger than those measured under longitudinal compression except that samples fabricated from 1.28?g/cm3 density exhibit lower elastic moduli in transverse direction than in longitudinal direction. The compressive strength and modulus increase with fabrication temperature at 1500?°C and 1600?°C, and then decrease with higher fabrication temperature. Samples fabricated from the lower density C/C preforms have greater compressive strength and modulus. X-ray tomography was applied before and after the mechanical tests to characterize the microstructure and damage patterns, and the results indicated that for C/C-SiC composites fabricated at 1700?°C from 1.28?g/cm3 density C/C preform the matrix has a volume fraction (vol%) of 36.9%, and the initial intra-bundle cracks (0.6?vol%) display a space crossing structure while the inter-bundle pores (6.0?vol%) are special irregularly distributed.  相似文献   

20.
In this study, the low velocity impact properties of rotationally molded skin–foam–skin sandwich structures were investigated experimentally since there is a need for a greater understanding of the impact behavior of these composites in service to extend the range of their applications. Polyethylene rotationally molded sandwich structures were manufactured at various skin and core layer thickness combinations and tested using an instrumented low velocity drop weight impact testing machine at 20–100 J impact energy levels, at room temperature. This allowed the identification of the impact response, failure mode, and the effects of the skin and core layer thickness on impact resistance. Force–deflection curves, maximum force, contact time, maximum deflection versus impact energy curves were analyzed. Samples were seen to fail due to the indentation dart piercing the upper and lower skins, with crushing and consolidation seen in the core foamed layer. Delamination at the core/skin interface was not observed. It was found that fracture initiates from the lower skin and then continues to grow to the upper skin via the foamed core layer. The impact resistance was noted to increase with increasing skin and core layer thickness; though an increase in skin layer thickness had a greater contribution than an increase in the core layer thickness. POLYM. ENG. SCI., 60: 387–397, 2019. © 2019 Society of Plastics Engineers  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号