首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The dynamic compression tests were conducted on a ZrB2-SiC-graphite (ZrB2-SiC-G) ceramic from the strain rate of 904–3136 s–1 using the split Hopkinson pressure bar. The effects of strain rate on the compressive strength, critical strain, stress–strain relation, and fracture pattern were discussed from the experimental results. The results showed that the dynamic compressive response of this ZrB2-SiC-G ceramic was obviously related to the strain rate at higher strain rates. At the strain rate of 3136 s–1, the dynamic compressive strength, critical strain, and toughness of the ZrB2-SiC-G ceramic increased to 1747 MPa, 0.0423, and 69.48 × 106 J/m3, respectively. As the strain rate increased, the dynamic compressive strength and critical strain increased linearly, and the damage became more significant. Moreover, the energy absorption of the ZrB2-SiC-G ceramic linearly increased with the strain rate, causing the ZrB2-SiC-G ceramic fractured into numerous smaller fragments at higher strain rates.  相似文献   

2.
To investigate the dynamic compression behaviors of fracturing and damage evolution of ZrB2–SiC ceramic, this paper proposes a discrete element method to carry out the dynamic compressive behavior of ZrB2–SiC ceramic. This study is based on three-dimensional discrete element-finite difference coupling modeling to realize the reproduction of the splitting Hopkinson pressure bar experiment process. Micro-parameters of the linear parallel bond model are obtained by calibrating dynamic compression strengths, stress–strain curves, and fracture characteristics of ZrB2–SiC ceramic. The dynamic compressive stress–strain curve can be divided into four stages according to the microcrack evolution and acoustic emission: stage I, linear elastic stage; stage II, microcrack initiation and then stable development stage; stage III, increment stage of microcracks before peak strength; stage IV, increment stage of microcracks after peak strength. The dynamic damage evolution with strain shows a Weibull distribution. The shape and scale parameters change with strain rate. In addition, under the dynamic compression, crack initiation stress, fracture pattern, and fragment size distribution of the ZrB2–SiC ceramic composite exhibited a significant strain-rate dependence.  相似文献   

3.
The quasi-static, dynamic compression experiments and micromechanical model were employed to declare the dynamic compressive response of ZrB2–20%SiC composite at high-strain rates. The quasi-static compressive strengths were measured to determine the range of initial microcrack length in ZrB2–20%SiC composite. The effects of the strain rate on dynamic compressive strength, critical stain, as well as fracture mechanisms were discussed based on experimental results. Dynamic mechanical properties of ZrB2-based composites display obvious strain rate dependence. The dynamic increase factor in the compressive strength shows a rapid increase above a transition strain rate of 1228 s−1. Moreover, a micromechanical model considering initial microcrack lengths is used to predict dynamic compressive strengths, which agree with the experimental results. Additionally, the critical strain has a linear increase tendency with the increase of strain rate. The dynamic compressive fracture mechanism of ZrB2–20%SiC composite is relative to the combination effect between strain rate and microstructure. The size of flaw distribution is critical below the transition strain rate resulting in bigger fragments, whereas the flaw density is primary with more and smaller fragments above the transition strain rate.  相似文献   

4.
Joining is crucial for ultra-high temperature ceramics (UHTCs) to be used in demanding environments due to the difficulty in manufacturing large and complex ceramic components. In this study, ZrB2-SiC composite UHTCs parts were joined via Ni foil as filler, and the mechanical properties and oxidation behaviour of the fabricated ZrB2-SiC/Ni/ZrB2-SiC (ZS/Ni/ZS) joint were investigated. Firstly, dense ZrB2-SiC composites were prepared from nano-sized powders by spark plasma sintering (SPS). The ZrB2-SiC parts were then joined using SPS. Furthermore, the elastic modulus, hardness, shear strength and high temperature oxidation behaviour of the ZS/Ni/ZS joint were examined to evaluate its properties and performance. The experimental results showed that the ZrB2-SiC parts were effectively joined via Ni foil using SPS and the resultant microstructures were free from any marked defects or residual metallic layers in the joint. Although the elastic modulus and hardness in the joining zone were lower than those in the base ZrB2-SiC ceramics, the shear strength of the joint reached ∼161 MPa, demonstrating satisfactory mechanical properties. Oxidation tests revealed that the ZS/Ni/ZS joint possesses good oxidation resistance for a wide range of elevated temperatures (800–1600 oC), paving the way for its employment in extreme environments.  相似文献   

5.
Laminated ZrB2-SiC ceramics with residual surface compression were prepared by stacking layers with different SiC contents. The maximum apparent fracture toughness of these laminated ZrB2-SiC ceramics was 10.4 MPam1/2, which was much higher than that of monolithic ZrB2-SiC ceramics. The theoretical predictions showed that the apparent fracture toughness was strongly dependent on the position of the notch tip, which was confirmed by the SENB tests. Moreover, laminated ceramics showed a higher fracture load when the notch tip located in the compressive layer, whereas showed a lower fracture load as the notch tip within the tensile layer. The toughening effect of residual compressive stresses was verified by the appearance of crack deflection and pop-in event. The influence of geometrical parameters on the apparent fracture toughness and residual stresses was analyzed. The results of theoretical calculation indicated that the highest residual compressive stress did not correspond to the highest apparent fracture toughness.  相似文献   

6.
Dynamic indirect tension experiments were performed on zirconium diboride-silicon carbide (ZrB2−20%SiC) ceramic. Flattened Brazilian disc specimens of ZrB2−20%SiC were prepared to conduct dynamic tensile tests using the modified Split Hopkinson pressure bar system. The tensile experiments were completed at the range of loading rates from 7.53 to 74.71 GP s−1. The tensile experimental results revealed that the zirconium diboride-silicon carbide ceramic composite is rate-sensitive in terms of the tensile strength and failure mode. The dynamic tensile strength increases linearly with the loading rate and changes from 195 MPa at 7.53 GP s−1 to 654 MPa at 74.71 GP s−1. Moreover, the dynamic tensile strength decreases with the increase in critical fracture time, which conforms to Tuler and Butcher's fracture criterion. In dynamic experiments, a high-speed camera was used to examine the tensile failure process, and fragments were collected to analyze the dynamic tensile failure mechanism. The tensile fracture mode of ZrB2−20%SiC obviously showed the sensitivity of the loading rate. The fragment size of ZrB2−20%SiC ceramic decreased but the quantity of fragments increased as the loading rate increased.  相似文献   

7.
The dynamic compressive behaviors of ZrB2‐based ceramic composites were investigated through the convenient and high‐temperature Splitting Hopkinson Pressure Bars. The effects of strain rate on dynamic compressive strength, stress–strain relationship and fracture mechanisms were discussed in detail. Moreover, the influence of pre‐oxidation on dynamic strength was also studied at 1073 K. The results indicate that the relationship between dynamic compressive stress and strain for ZrB2‐SiC‐graphite composite is strong nonlinear at room temperature and 1073 K. Dynamic compressive strength increases linearly with the increase of strain rate. The pre‐oxidation effect results in the enhancement of dynamic compressive strength at 1073 K in comparison with the room temperature strength. Based on the microstructures, the dominant intergranular fracture and pull‐out of graphite flake are observed at low strain rates, whereas the transgranular fracture and cutting of graphite flake are found at high strain rates. Fracture mechanisms play a crucial role on the changes of dynamic compressive strength and critical strain with strain rate.  相似文献   

8.
The high sintering temperature and interface interaction seriously degraded the toughening effects of continuous carbon fiber in ZrB2-SiC ceramic. The pyrolytic carbon coated carbon fiber reinforced ZrB2-SiC composite (Cf-PyC/ZrB2-SiC) with desirable properties was successfully achieved via brushing nano ZrB2-SiC slurry followed by spark plasma sintering at relatively low sintering temperature. The fabricated Cf-PyC/ZrB2-SiC composite presented a non-brittle fracture feature and a remarkable enhancement in comparison with the ZrB2-SiC composite reinforced by the as-received carbon fiber (Cf-AS/ZrB2-SiC). The fracture toughness and critical crack size were increased from 5.97?±?0.18–7.66?±?0.24?MPa?m1/2 and from 91.6 to 164.5?µm, respectively. A high work of fracture of 1915?J/m2 for Cf-PyC/ZrB2-SiC composite was achieved, almost four times higher than that of the Cf-AS/ZrB2-SiC composite (463?J/m2). Multiple toughening mechanisms contributed to such enhancement, such as crack deflection, fiber bridging, fiber pull-out and crack branching. This work provides a feasible approach to fabricate high-performance fiber reinforced ceramic composites having a high work of fracture.  相似文献   

9.
The quasi-static (strain rate of 10−4 s−1) and dynamic compression experiments (strain rate of 200–1500 s−1) of ZrB2–SiC–graphite composites are conducted at 293 K and 1073 K. The initial compressive strength and Weibull modulus are calculated to handle the discrete quasi-static experimental data. Considering effects of strain rate and temperature, the compressions of ZrB2–SiC–graphite composites are investigated. The results show that both compressive strength and fragment size are higher at 1073 K than those at room temperature. The compressive strengths increase with increasing strain rate at room temperature and 1073 K, whereas fragment sizes decrease. Moreover, a micromechanical model is utilized to characterize the effect of strain rate on the compressive strength. The predictions of this micromechanical model are good agreement with the experimental results. Meanwhile, the fragment sizes of dynamic compressive specimens are analyzed through analytical approaches.  相似文献   

10.
ZrB2-SiC composites with different SiC content were prepared through aqueous tape casting and hot pressing. The influences of dispersant, SiC content and binder content on the rheological properties of slurries were investigated and the conditions for preparing stable ZrB2-SiC suspensions were optimized. After tape casting and drying, the green ZrB2-SiC tapes showed good flexibility, lubricious surface and homogeneous microstructure. The ZrB2 ceramics could be densified to 97.2% after hot-pressing, while the ZrB2 containing 20 and 30 vol% SiC ceramics were nearly fully densified (>99%). The sintered ZrB2-20 vol% SiC ceramic had improved mechanical properties compared with ZrB2 ceramic. Further increase in SiC content resulted in lower flexural strength and fracture toughness. SEM and TEM showed a fine microstructure with a clear grain boundary. The fracture mode changed from intragranular type for ZrB2 to both intragranular and intergranular type for ZrB2-SiC composites.  相似文献   

11.
Graphene derivative materials exhibit excellent mechanical and thermal properties, which have been extensively used to toughen ceramics and improve thermal shock resistance. To overcome the thermal agglomeration of graphene oxide (GO) during heating and drying process, ZrB2-SiC particles decorated GO hybrid foam with uniformly anchored ceramic particles was synthesized by electrostatic self-assembly and liquid nitrogen-assisted freeze-drying process. Densified rGO/ZrB2-SiC ceramics with varying microstructure, thermal physical and mechanical properties were obtained by adjusting the content of decorated ceramic particles. Although the flexural strength of rGO/ZrB2-SiC ceramics have an attenuation compared with that of ZrB2-SiC ceramic, the thermal conductivity, work of fracture and thermal shock resistance are greatly improved. rGO/ZrB2-SiC ceramics exhibit delayed fracture and increasing R-curve behavior during the crack propagation. The novel preparation technology allows for the well dispersion of rGO in ZrB2-SiC ceramics and can be easily extended to other ceramic or metal materials systems.  相似文献   

12.
The continuous carbon fiber reinforced ZrB2-SiC composite was fabricated successfully via a hybrid technique based on nano ceramic slurry impregnation, polymer infiltration and pyrolysis and low-temperature hot pressing. The Cf/ZrB2-SiC composites exhibited non-brittle fracture modes and the chemical interaction at the fiber/matrix interfaces was effectively inhibited owing to the low sintering temperature. The S2-Cf/ZrB2-SiC composite presented the highest mechanical properties with fracture toughness of 4.47?±?0.15?MPa?m1/2 and the work of fracture of 877?J/m2, which was attributed to the multiple length-scale toughening mechanisms including the macroscopic toughening mechanisms of crack deflection and crack branching, the micro toughening mechanisms of fiber bridging and fiber pull-out. This work presented a novel and effective method to fabricate high-performance continuous carbon fiber reinforced ceramic matrix composites.  相似文献   

13.
The three dimensional needle-punched carbon fiber reinforced ZrB2-SiC composite (Cf/ZrB2-SiC) with highly uniform distribution was fabricated successfully via a novel vibration-assisted slurry impregnation and low-temperature (1450 °C) hot pressing technique using nanosized ZrB2 powders. The carbon fiber/ceramic matrix interfaces were clear without obvious reaction products detected by the high resolution transmission electron microscopy (HR-TEM), indicating the degradation of carbon fiber was effectively inhibited. The Cf/ZrB2-SiC composite exhibited a typical non-brittle fracture feature with a high work of fracture of 1104 J/m2, which was approximately twice that of composite fabricated only by slurry impregnation and hot pressing. The enhancement in work of fracture was attributed to multiple toughening mechanisms of continuous carbon fibers such as extensive fiber bridging and pull-out accompanied by obvious crack deflection and branching. This work provides a valuable potential of preparing continuous carbon fiber reinforced ceramic composites with uniform component distribution and enhanced mechanical properties.  相似文献   

14.
ZrB2 ceramics were prepared by in-situ reaction hot pressing of ZrH2 and B. Additions of carbon and excess boron were used to react with and remove the residual oxygen present in the starting powders. Additions of tungsten were utilized to make a ZrB2-4 mol%W ceramic, while a change in the B/C ratio was used to produce a ZrB2-10 vol% ZrC ceramic. All three compositions reached near full density. The baseline ZrB2 and ZrB2–ZrC composition contained a residual oxide phase and ZrC inclusions, while the W-doped composition contained residual carbon and a phase that contained tungsten and boron. All three compositions exhibited similar values for flexure strength (~520 MPa), Vickers hardness (~15 GPa), and elastic modulus (~500 to 540 GPa). Fracture toughness was about 2.6 MPa m1/2 for the W-doped ZrB2 compared to about 3.8 MPa m½ for the ZrB2 and ZrB2–ZrC ceramics. This decrease in fracture toughness was accompanied by an observed absence of crack deflection in the W-doped ZrB2 compared with the other compositions. The study demonstrated that reaction-hot-pressing can be used to fabricate ZrB2 based ceramics containing solid solution additives or second phases with comparable mechanical properties.  相似文献   

15.
The high temperature compressive strength behavior of zirconium diboride (ZrB2)-silicon carbide (SiC) particulate composites containing either carbon powder or SCS-9a silicon carbide fibers was evaluated in air. Constant strain rate compression tests have been performed on these materials at room temperature, 1400, and 1550 °C. The degradation of the mechanical properties as a result of atmospheric air exposure at high temperatures has also been studied as a function of exposure time. The ZrB2-SiC material shows excellent strength of 3.1 ± 0.2 GPa at room temperature and 0.9 ± 0.1 GPa at 1400 °C when external defects are eliminated by surface finishing. The presence of C is detrimental to the compressive strength of the ZrB2-SiC-C material, as carbon burns out at high temperatures in air. As-fabricated SCS-9a SiC fiber reinforced ZrB2-SiC composites contain significant matrix microcracking due to residual thermal stresses, and show poor mechanical properties and oxidation resistance. After exposure to air at high temperatures an external SiO2 layer is formed, beneath which ZrB2 oxidizes to ZrO2. A significant reduction in room temperature strength occurs after 16-24 h of exposure to air at 1400 °C for the ZrB2-SiC material, while for the ZrB2-SiC-C composition this reduction is observed after less than 16 h. The thickness of the oxide layer was measured as a function of exposure time and temperatures and the details of oxidation process has been discussed.  相似文献   

16.
TiB2–SiC/B4C composite ceramics have application as lightweight armor ceramic material, and therefore, it is particularly important to research their dynamic mechanical properties and fracture behavior under high strain rates. In the present research, the dynamic compression strength and Hugoniot elastic limit (HEL) of these composite ceramics were determined by split Hopkinson pressure bar technology and plate impact equipment, respectively. The experimental investigation results illustrated that the composite ceramic exhibited outstanding dynamic compression strength (2750 MPa) and displayed a remarkable strain-rate strengthening effect. The HEL was calculated as 18.49 GPa, and the commonly used Pμ form of the Hugoniot curve was derived from the calculated data of the shock velocity and particle velocity. The dynamic fracture morphologies of the TiB2–SiC/B4C composite ceramic and monolithic B4C ceramic (correlation data) at macro and micro scales were observed and analyzed in detail. The dynamic fracture mechanisms were summarized in-depth into the following three points. First, the strengthening mechanism offered by the in situ second phases could significantly improve the comprehensive property. Second, the mixed-inter/transgranular fracture mode was conducive to energy absorption. Third, the anchoring effect and thermal expansion coefficient mismatch contributed to the energy dissipation and fracture toughness improvement. This work provides the foundation for the application and development of lightweight armor ceramic materials.  相似文献   

17.
The fatigue behavior of a ZrB2-based ceramic containing SiC and graphite was compared to a ZrB2-SiC reference material based on bending testing, quantitative calculations as well as crack growth and fracture characterization. The addition of graphite flake makes ZrB2-SiC-Graphite ceramics exhibit fatigue failure behavior at very high stress level (93% of the characteristic strength, σ0), owing to the increased KIc promoted by crack deflection, bridging, bifurcation and pull-out of graphite, while the fatigue behavior of ZrB2-SiC appears when the maximum stress is below ~86%σ0. However, both the slow crack growth exponents of the graphite containing ceramic, n and nc values, which reflect the fatigue resistance in static and cyclic fatigue conditions, respectively, are only 1/4 as compared to the reference graphite-free ceramic. This may be due to the weak boride/graphite interfaces, which lead to the decrease of the initial critical stress intensity factor (Kc-initial) value from 2.6 to 2.0 MPa m1/2.  相似文献   

18.
Biomimetic Bouligand architecture is constructed in the ceramic to improve its toughness. Firstly, unidirectional carbon fiber-reinforced ZrB2-SiC ceramic films are achieved through a vacuum-assisted filtration method using graphene oxide. Then, ceramic films are helically assembled at a fixed angle of 30° in the graphite die based on the fiber orientation. Finally, the spark plasma sintering method was utilized to densify helical assembly carbon fiber/ceramic films. By constructing Bouligand structure, high fracture toughness (7.4 MPa·m0.5) and work of fracture (∼1055 J/m2) are achieved in ZrB2-based ceramic. The toughening mechanisms mainly are crack deflection, twisting and branching, carbon fiber pulling out, and bridging.  相似文献   

19.
The development of novel cermet composites based on porous ceramics with high porosity, interconnected pore structure and good mechanical property has attracted considerable attention in engineering application. In this work, water-based freeze casting process was employed to fabricate ZrB2-SiC porous ceramic with aligned lamellar-channels structure using PAA-NH4 as the dispersant. The results revealed that the well-dispersed suspension with best rheological behavior was obtained using 1.0 wt% PAA-NH4 at pH 9. The crack-free porous ceramic exhibited small volume shrinkage ranging from 2.59 % to 1.87 %. By varying the solid loading, the fabricated samples displayed a tailored porosity ranging from 76.12% to 59.37% and an excellent compressive strength of 7 MPa to 78 MPa. After oxidation, the samples displayed a decreased porosity and an increased compressive strength. The ZrB2­SiC porous ceramic fabricated in this work will be a promising candidate for the framework of cermet composite.  相似文献   

20.
Herein, biomimetic Cf/ZrB2-SiC ceramic composites with bouligand structures are fabricated by combining precursor impregnation, coating, helical assembly and hot-pressing sintering. First, Cf/ZrB2-SiC ceramic films are achieved through a precursor impregnation method using polycarbosilane (PCS). Second, the PCS-Cf/ZrB2-SiC ceramic films are coated with ZrB2 and SiC ceramic layers. Finally, hot-pressing sintering is employed to densify helical assembly Cf/ceramic films with a fixed angle of 30°. The microstructures and carbon fiber content on the mechanical properties of biomimetic Cf/ZrB2-SiC ceramic composites are analyzed in detail. The results show that the coated ceramic layer on PCS-Cf/ZrB2-SiC films can heal the cracks formed by pyrolysis of PCS, and the mechanical properties are obviously improved. Meanwhile, the mechanical properties could be tuned by the contents of the carbon fiber. The toughening mechanisms of Cf/ZrB2-SiC ceramic composites with bouligand structures are mainly zigzag cracks, crack deflection, multiple cracks, carbon fiber pulling out and bridging.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号