首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The influence of SO2, H2S and COS in low concentrations on the deactivation of Pt/Rh/BaO/Al2O3 NOx storage catalysts was investigated. Different samples of the catalyst were exposed to synthetic gas mixtures mimicking lean/rich engine cycling in a mixed lean application at 400 °C. The lean gas mixture contained 8 vol.% O2, 500 vol-ppm C3H6 and 400 vol-ppm NO balanced to 100 vol.% with Ar. The rich excursions were performed by switching off the oxygen supply. Sulphur, 25 vol-ppm of either SO2, H2S or COS, was added to the gas flow either during the lean, the rich or both periods. This procedure aimed at investigating the influence of the exposure conditions and therefore the lean and rich periods were kept equally long (5 min). In addition, thermodynamical calculations for the prevailing conditions were performed.

It was concluded that all sulphur compounds investigated, i.e. SO2, H2S and COS, had similar, negative impact on the NOx storage ability of the catalyst and that they all showed increased deactivation rates during rich exposure compared to lean. During lean exposure, all sulphur carriers showed similar behaviour, while H2S and COS caused severe loss of noble metal activity during rich exposure.  相似文献   


2.
This paper shows the behavior of a Pt/Ba/γ–Al2O3 automotive catalyst in a fixed bed reactor during cyclic operation at lean and rich gas phase conditions at short (seconds) and long (hours) cycling times at different temperatures. Reactor exit gas phase concentrations have been measured and catalyst properties have been determined before and after selective cycling experiments. The experimental results indicate that: (i) Upon 9 h lean and 15 h rich cycling, the NO oxidation efficiency of the catalyst decreases with time while incomplete regeneration is seen, even after 15 h rich exposure with H2. The cyclic steady state is reached after 3 lean/rich cycles, at which only 60% of the available barium is involved in the NOx storage/reduction. (ii) The BET surface area, pore volume, and Pt dispersion decrease by approximately 40%, which may be a result of masking of Pt sites or blocking of pores of the barium clusters as BaCO3 becomes Ba(NO3)2. Experiments with catalyst pellet sizes of 180 and 280 μm along with XPS measurements show that blocking of catalyst pellet pores is not taking place. (iii) When applying lean/rich cycling in the order of seconds, it appears that catalyst history and lean/rich timing affect the number of cycles required to arrive at a closed N balance. XRD results after lean exposure confirm the formation of barium nitrate in the bulk of the barium cluster.  相似文献   

3.
This study provides insight into the effect of Pt dispersion on the overall rate and product distribution during NOx storage and reduction. The storage and reduction performance of Pt/BaO/A2O3 monoliths with varied Pt dispersion (3%, 8%, and 50%) and fixed Pt (2.48 wt.%) and BaO (13.0 wt.%) loadings is reported. At low temperature (<200 °C), the differences in storage and reduction activity were the largest between the three catalysts. The amount of NOx stored increased with increased dispersion, as did the amount of stored NOx that was reduced. These trends are attributed to larger Pt surface area and Pt–BaO interfacial perimeter, the latter of which enhances the spillover of surface species between the precious metal and storage components. At high temperature (370 °C), the stored NOx was almost completely regenerated for the three catalysts. However, the regeneration of the 3% dispersion catalyst was much slower, suggesting a rate limitation involving the reverse spillover of stored NOx to Pt and/or of adsorbed hydrogen from Pt to BaO. The results indicate that the catalyst dispersion and operating conditions may be tuned to achieve the desired ammonia selectivity. For the aerobic regeneration feed, the most (net) NH3 was generated by the 50% dispersion catalyst at the lowest temperature (125 °C), by the 3% dispersion catalyst at the highest temperature (340 °C), and by the 8% dispersion catalyst at the intermediate temperatures (170–290 °C). Similar trends were observed for the net production of NH3 with an anaerobic regeneration feed. A phenomenological picture is proposed that describes the effects of Pt dispersion consistent with the established spatio-temporal behavior of the lean NOx trap.  相似文献   

4.
A systematic mechanistic study of NO storage and reduction over Pt/Al2O3 and Pt/BaO/Al2O3 is carried out using Temporal Analysis of Products (TAP). NO pulse and NO/H2 pump-probe experiments at 350 °C on pre-reduced, pre-oxidized, and pre-nitrated catalysts reveal the complex interplay between storage and reduction chemistries and the importance of the Pt/Ba coupling. NO pulsing experiments on both catalysts show that NO decomposes to major product N2 on clean Pt but the rate declines as oxygen accumulates on the Pt. The storage of NO over Pt/BaO/Al2O3 is an order of magnitude higher than on Pt/Al2O3 showing participation of Ba in the storage even in the absence of gas phase O2. Either oxygen spillover or transient NO oxidation to NO2 is postulated as the first steps for NO storage on Pt/BaO/Al2O3. The storage on Pt/Ba/Al2O3 commences as soon as Pt–O species are formed. Post-storage H2 reduction provides evidence that a fraction of NO is not stored in close proximity to Pt and is more difficult to reduce. A closely coupled Pt/Ba interfacial process is corroborated by NO/H2 pump-probe experiments. NO conversion to N2 by decomposition is sustained on clean Pt using excess H2 pump-probe feeds. With excess NO pump-probe feeds NO is converted to N2 and N2O via the sequence of barium nitrate and NO decomposition. Pump-probe experiments with pre-oxidized or pre-nitrated catalyst show that N2 production occurs by the decomposition of NO supplied in a NO pulse or from the decomposition of NOx stored on the Ba. The transient evolution of the two pathways depends on the extent of pre-nitration and the NO/H2 feed ratio.  相似文献   

5.
The pathway for selective reduction of NOx by methane over Co mordenite cataysts has been studied by comparing the rates of the individual reactions (NO oxidation, CH4 oxidation, NO2 reduction) with that of the combined reaction (NO + O2 + CH4). Co(+2) was exchanged into H-MOR and Na-MOR to give catalysts with different metal loading and number of support protons. Additionally, exchanged Co(+2) ions were precipitated with NaOH to produce dispersed cobalt oxide on Na-MOR. The NO oxidation rate is the same for ion exchanged Co(+2) ions in H-MOR and Na-MOR, but the rate of Co(+2) ions is much lower than that of cobalt oxide. NO oxidation equilibrium is obtained only for those catalysts with high metal loading, cobalt oxide or run at low GHSV. Under the conditions of selective catalytic reduction, methane oxidation by O2 is low for all catalysts. The turnover frequency of Co on Na-MOR, however, is higher than that on H-MOR. The rate of NO2 reduction to N2 is directly proportional to the number of support acid sites and independent of the amount of Co. Comparison of the rates and selectivities for the individual reactions with the combined reaction of NO + O2 + CH4 indicates that there are two types of catalysts. For the first, the NO oxidation is in equilibrium and the rate determining step is reduction of NO2. For these catalysts, the rate (and selectivity) for formation of N2 is identical from NO + O2 + CH4 and NO2 + CH4. These catalysts have high metal loading and few acid sites. Nevertheless, the rate of N2 formation increases with increasing number of protons. For the second type of catalyst, NO oxidation is not in equilibrium and is the rate limiting step. For these catalysts the rate of N2 formation increases with increasing metal loading. Neither catalyst type, however, is optimized for the maximum formation of N2. By using a mixture of catalysts, one with high NO oxidation activity and one with a large number of Brønsted acid sites, the rate of N2 is greater than the weighted sum of the individual catalysts. The current results support the proposal that the pathway for selective catalytic reduction is bifunctional where metal sites affect NO oxidation, while support protons catalyze the formation of N2.  相似文献   

6.
We have investigated the regeneration of a nitrated or sulphated model Pt/Ba-based NOx trap catalyst using different reductants. H2 was found to be more effective at regenerating the NOx storage activity especially at lower temperature, but more importantly over the entire temperature window after catalyst ageing. When the model NOx storage catalyst is sulphated in SO2 under lean conditions at 650 °C almost complete deactivation can be seen. Complete regeneration was not achieved, even under rich conditions at 800 °C in 10% H2/He. Barium sulphate formed after the high temperature ageing was partly converted to barium sulphide on reduction. However, if the H2 reduced sample was exposed to a rich condition in a gas mixture containing CO2 at 650 °C, the storage activity can be recovered. Under these rich conditions the S2− species becomes less stable than the CO32−, which is active for storing NOx. Samples which were lean aged in air containing 60 ppm SO2 at <600 °C, after regeneration at λ=0.95 at 650 °C, have a similar activity window to a fresh catalyst. It is, therefore, important that CO2 is present during the rich regenerations of the sulphated model samples (as of course it would be under real conditions), as suppression of carbonate formation can lead to sulphide formation which is inactive for NOx storage.  相似文献   

7.
Transient behaviour of catalytic monolith converter with NOx storage is studied under conditions typical for automobiles with lean-burn engines (i.e., diesel and advanced gasoline ones). Periodical alternation of inlet concentrations is applied—NOx are adsorbed on the catalyst surface during a long reductant-lean phase (2–3 min) and then reduced to N2 within a short reductant-rich phase (2–6 s). Samples of industrial NOx storage and reduction catalyst of NM/Ba/CeO2/γ-Al2O3 type (NM = noble metal), washcoated on 400 cpsi cordierite substrate, are used in the study. Effects of the rich-phase length and composition on the overall NOx conversions are examined experimentally. Reduction of NOx by CO, H2 and unburned hydrocarbons (represented by C3H6) in the presence of CO2 and H2O is considered.

Effective, spatially 1D, heterogeneous mathematical model of catalytic monolith with NOx and oxygen storage capacity is described. The minimum set of experiments needed for the evaluation of relevant reaction kinetic parameters is discussed: (i) CO, H2 and HC oxidation light-off under both lean and rich conditions, including inhibition effects, (ii) NO/NO2 transformation, (iii) NOx storage, including temperature dependence of effective NOx storage capacity, (iv) water gas shift and steam reforming under rich conditions, i.e., in situ production of hydrogen, (v) oxygen storage and reduction, including temperature dependence of effective oxygen storage capacity, and (vi) NOx desorption and reduction under rich conditions. The experimental data are compared with the simulation results.  相似文献   


8.
The NOx storage behavior of a series of Pt-Ba/Al2O3 catalysts, prepared by wet impregnation of Pt/Al2O3 with Ba(Ac)2, has been investigated. The catalysts with Ba loadings in the range 4.5–28 wt.% were calcined at 500 °C in air and subsequently exposed to NO pulses in 5 vol.% O2/He atmosphere. Catalysts were characterized by means of thermogravimetry (TG) combined with mass spectroscopy (MS) and XRD before and after exposure to NO pulses. Characterization of the calcined catalysts corroborated the existence of three Ba-containing phases which are discernible based on their different thermal stability: BaO, LT-BaCO3 and HT-BaCO3. Characterization after NOx exposure showed that the different Ba-containing phases present in the catalysts possess different reactivity for barium nitrate formation, depending on their interfacial contact. The different Ba(NO3)2 species produced upon NOx exposure could be distinguished based on their thermal stability. The study revealed that during the NOx storage process a new thermally instable BaCO3 phase formed by reaction of evolved CO2 with active BaO. The fraction of Ba-containing species that were active in NOx storage depended on the Ba loading, showing a maximum at a Ba loading of about 17 wt.%. Lower and higher Ba loading resulted in a significant loss of the overall efficiency of the Ba-containing species in the storage process. The loss in efficiency observed at higher loading is attributed to the lower reactivity of the HT-BaCO3, which becomes dominant at higher loading, and the increased mass transfer resistance.  相似文献   

9.
A commercial NOx-storage catalyst (NSC) has been subjected to different aging procedures on the engine bench simulating 100,000 km mileage. The aging consisted of cyclical sulfur exposure, subsequent sulfur removal and testing of the catalytic activity. More aggressive desulfation procedures result in more efficient sulfur removal and consequently good high temperature NOx-conversion. However, low temperature NOx-performance is lower than for agings employing more moderate desulfation conditions.

Sulfur post mortem analyses reveal a slight decrease of residual sulfur concentration over the length of all catalysts after completion of the aging. BET and CO-chemisorption data are in line with the increase of temperature from catalyst inlet to outlet during the desulfation. The conversion of BaCO3 to BaSO4 during the sulfur poisoning was followed by IR, TPD and TPR. A quantitative analysis of the data shows that at the end of the agings all residual sulfur is mainly located at barium sites as opposed to other oxide components like e.g. alumina or ceria. TPR data suggest that prolonged rich purges of the sulfated catalyst lead to an efficient decomposition of sulfates however some sulfur is being trapped in the form of BaS which seems difficult to remove under constant rich conditions.

XPS data suggest that the bulk sulfur amounts in the catalyst may be decoupled from the actual concentration at the catalyst surface. In that sense, the residual sulfur concentration might be limited in some cases as a criterion to assess the performance of a NSC. More reducing desulfation conditions cause the residual sulfur to be present in the form of more reduced sulfur species (sulfites, sulfides) on the catalyst.  相似文献   


10.
K. Vaezzadeh  C. Petit  V. Pitchon   《Catalysis Today》2002,73(3-4):297-305
NOx sorption and reduction capacities of 12-tungstophosphoric acid hexahydrate (H3PW12O40·6H2O, HPW) were measured under representative alternating conditions of lean and rich exhaust-type gas mixture. Under lean conditions, the sorption of NOx is large and is equivalent to 37 mg of NOx/gHPW. Although a part of these NOx remains unreduced, HPW is able to reduce some of the NOx to produce N2 by a reaction between the sorbed NO2 and hydrocarbon (HC), but this process is slow. The addition of 1% Pt affects strongly the chemical behaviour occurring during the course of a rich operation. The NO desorption observed at the beginning of the rich phase is strongly accelerated. The direct correlation between NO2 consumption and CO2 production shows that the principal pathway is the reaction CO+NO2→CO2+NO. In a mixture of reducing gas (CO, HC, H2), the competition is strongly in favour of CO though in its absence the reaction observed was the hydrogenation of propene to propane.  相似文献   

11.
G. Ramis  Li Yi  G. Busca 《Catalysis Today》1996,28(4):1528-380
The adsorption and transformation of ammonia over V2O5, V2O5/TiO2, V2O5-WO3/TiO2 and CuO/TiO2 systems has been investigated by FT-IR spectroscopy. In all cases ammonia is first coordinated over Lewis acid sites and later undergoes hydrogen abstraction giving rise either to NH2 amide species or to its dimeric form N2H4, hydrazine. Other species, tentatively identified as imide NH, nitroxyl HNO, nitrogen anions N2 and azide anions N3 are further observed over CuO/TiO2. The comparison of the infrared spectra of the species arising from both NH3 and N2H4 adsorbed over CuO/TiO2 strongly suggest that N2H4 is an intermediate in NH3 oxidation over this active selective catalytic reduction (SCR) and selective catalytic oxidation (SCO) catalysts. This implies that ammonia is activated in the form of NH2 species for both SCR and SCO, and it can later dimerize. Ammonia protonation to ammonium ion is detected over V2O5-based systems, but not over CuO/TiO2, in spite of the high SCR and SCO activity of this catalyst. Consequently Brönsted acidity is not necessary for the SCR activity.  相似文献   

12.
In this work, we investigated the activity and stability of Ag–alumina catalysts for the SCR of NO with methane in gas streams with a high concentration of SO2, typical of coal-fired power plant flue gases. Ag–alumina catalysts were prepared by coprecipitation–gelation, and dilute nitric-acid solutions were used to remove weakly bound silver species from the surface of the as prepared catalysts after calcination. SO2 has a severe inhibitory effect, essentially quenching the CH4-SCR reaction on this type catalysts at temperatures <600 °C. SO2 adsorbs strongly on the surface forming aluminum and silver sulfates that are not active for CH4-SCR of NOx. Above 600 °C, however, the reaction takes place without catalyst deactivation even in the presence of 1000 ppm SO2. The reaction light-off coincides with the onset of silver sulfate decomposition, indicating the critical role of silver in the reaction mechanism. SO2 is reversibly adsorbed on silver above 600 °C. While alumina sites remain sulfated, this does not hinder the reaction. Sulfation of alumina only decreases the extent of adsoption of NOx, but adsorption of NOx is not the limiting step. Methane activation is the limiting step, hence the presence of sulfur-free Ag–O–Al species is a requirement for the reaction. Strong adsorption of SO2 on Ag–alumina decreases the rates of the reaction, and increases the activation energies of both the reduction of NO to N2 and the oxidation of CH4, the latter more than the former. Our results indicate partial contribution of gas phase reactions to the formation of N2 above 600 °C. H2O does not inhibit the reaction at 625 °C, and the effect of co-addition of H2O and SO2 is totally reversible.  相似文献   

13.
A new catalyst for NOx storage/reduction was prepared to improve the activity of Ba-Pt/γ-Al2O3 by replacing Ba with a mixture of Ba and Mg. The catalyst was prepared by impregnating 1 wt.% Pt and then the alkaline-earth metals (Mg, Ba) on commercial γ-Al2O3. The tests have been carried out in a wide temperature range (ca. 200–400 °C) in order to understand the role of the mixture of alkaline-earth metals as a function of temperature. The behaviour of the two catalysts was different and indicated a synergetic effect between Mg and Ba.  相似文献   

14.
For the first time, the coupling of fast transient kinetic switching and the use of an isotopically labelled reactant (15NO) has allowed detailed analysis of the evolution of all the products and reactants involved in the regeneration of a NOx storage reduction (NSR) material. Using realistic regeneration times (ca. 1 s) for Pt, Rh and Pt/Rh-containing Ba/Al2O3 catalysts we have revealed an unexpected double peak in the evolution of nitrogen. The first peak occurred immediately on switching from lean to rich conditions, while the second peak started at the point at which the gases switched from rich to lean. The first evolution of nitrogen occurs as a result of the fast reaction between H2 and/or CO and NO on reduced Rh and/or Pt sites. The second N2 peak which occurs upon removal of the rich phase can be explained by reaction of stored ammonia with stored NOx, gas phase NOx or O2. The ammonia can be formed either by hydrolysis of isocyanates or by direct reaction of NO and H2.

The study highlights the importance of the relative rates of regeneration and storage in determining the overall performance of the catalysts. The performance of the monometallic 1.1%Rh/Ba/Al2O3 catalyst at 250 and 350 °C was found to be dependent on the rate of NOx storage, since the rate of regeneration was sufficient to remove the NOx stored in the lean phase. In contrast, for the monometallic 1.6%Pt/Ba/Al2O3 catalyst at 250 °C, the rate of regeneration was the determining factor with the result that the amount of NOx stored on the catalyst deteriorated from cycle to cycle until the amount of NOx stored in the lean phase matched the NOx reduced in the rich phase. On the basis of the ratio of exposed metal surface atoms to total Ba content, the monometallic 1.6%Pt/Ba/Al2O3 catalyst outperformed the Rh-containing catalysts at 250 and 350 °C even when CO was used as a reductant.  相似文献   


15.
The activity of titania based copper and platinum monolithic catalysts in the reduction of nitrogen oxides was studied with exhaust gases from a Diesel engine injecting fuel as reductant. Combining both catalysts, a two-stage system was designed, studying the influence of the copper catalysts composition on its performance with synthetic gas mixtures. The influence of reactants concentration and operating conditions was also investigated. Taking into account these results, a double-bed system with a cell density of 33 cell cm−2 (210 c.p.s.i.) was prepared. Linear velocity had a strong influence on the performance of the Pt catalyst and of the double-bed. Two NOx conversion maxima were observed with Pt/TiO2 at 225°C and 350°C operating at 6.6 m s−1. Promising NOx conversions were achieved in the temperature range 200–450°C.  相似文献   

16.
Free energy minimization calculations are used to determine the thermodynamic equilibrium concentrations of NOx and other species in stoichiometric and lean gas mixtures over a range of temperatures and compositions. Under lean (excess N2 and O2) conditions, the NO decomposition (NO↔(1/2)N2+(1/2)O2) and NO oxidation (NO+(1/2)O2↔NO2) equilibria impose lower bounds on the NOx concentrations achievable by thermodynamic equilibration or NOx decomposition, and these equilibrium NOx concentrations can be practically significant. Assuming a perfect isothermal catalyst acting on a representative diesel exhaust stream collected over the federal test procedure (FTP) cycle, equilibrium NOx levels exceed upcoming California Low Emission Vehicle II (LEV-II) and Tier II NOx emissions standards for automobiles and trucks at temperatures above approximately 800 K. Consideration of a perfect adiabatic catalyst acting on the same diesel exhaust shows that equilibrium NOx values can fall below NOx emissions standards at lower temperatures, but to achieve these low concentrations would require the catalyst to attain 100% approach to equilibrium at very low temperatures. It is concluded that NOx removal based on a thermodynamic equilibrating catalyst under lean exhaust conditions is not practically viable for automotive application, and that to achieve upcoming NOx standards will require selective NOx catalysts that vigorously promote NOx reactions with reductant and do not promote NO decomposition or oxidation. Finally, the ability of a selective NOx catalyst system to reduce NOx concentrations to or below thermodynamic equilibrium values is proposed as a useful measure for selective catalytic reduction (SCR) activity.  相似文献   

17.
Characteristics of MnOy–ZrO2 and Pt–ZrO2–Al2O3 as reversible sorbents of NOx were investigated under dynamic changes in atmosphere. These sorbents can be used reversibly with a change of C3H8 concentration in the reaction gases. Catalytic reduction of NO occurred in the presence of propane, which was more pronounced on Pt–ZrO2–Al2O3 than on MnOy-ZrO2 due to high activity of Pt surface for this reaction on MnOy in MnOy–ZrO2. The sorption was observed as soon as the atmosphere changed from a reducing to an oxidizing one. This implies that a high equilibrium partial pressure of O2 is necessary for NO uptake since the sorbed NO3 species becomes stable. The beginning of NOx desorption atmospheres was somewhat dependent on the amount of stored NOx. The presence of propane in the gas phase strongly affected the characteristic sorption and desorption properties of MnOy–ZrO2 and Pt–ZrO2–Al2O3. The sorption and desorption properties are different for MnOy–ZrO2 and Pt–ZrO2–Al2O3, since the noble metal or metal oxide possesses unique activity for the NO reaction with C3H8 and the amount of oxygen available for oxidative sorption of NO.  相似文献   

18.
A new NOx storage-reduction electrochemical catalyst has been prepared from a polycrystalline Pt film deposited on 8 mol% Y2O3-stabilized ZrO2 (YSZ) solid electrolyte. BaO has been added onto the Pt film by impregnation method. The NOx storage capacity of Pt-BaO/YSZ system was investigated at 350 °C and 400 °C under lean conditions. Results have shown that the electrochemical catalyst was effective for NOx storage. When nitric oxides are fully stored, the catalyst potential is high and reaches its maximum. On the other hand, when a part of NO and also NO2 desorb to the gas phase, the catalyst potential remarkably drops and finally stabilizes when no more NOx storage occurs but only the reaction of NO oxidation into NO2. Furthermore, the investigation has clearly demonstrated that the catalyst potential variation versus temperature or chemical composition is an effective indicator for in situ following the NOx storage-reduction process, i.e. the storage as well as the regeneration phase. The catalyst potential variations during NOx storage process was explained in terms of oxygen coverage modifications on the Pt.  相似文献   

19.
NOx storage and reduction (NSR) catalysts containing Pt, Ba and Fe were studied as a function of reaction conditions and catalyst composition using response surface methodology combined with high-throughput experimentation. The concentrations of the reactant gases and the reactor temperature were varied to probe their effect on catalyst performance, as quantified by lean NOx storage and N2O production. An empirical model relating the catalyst performance to five reaction condition variables and three metal weight loading variables has also been developed. It was found that the temperature and the concentrations of the reducing agents, i.e. carbon monoxide and ethylene, had the strongest effect on the lean NOx storage. It was also found that the Pt and Ba weight loadings had a much greater effect than Fe weight loadings on the performance of NSR catalysts. This model provides insight about the factors controlling the NOx conversion by NSR catalysts and also predicts the optimum catalyst composition for given reaction conditions and vice versa. As an additional study, the relationship between sulfur poisoning, nitrous oxide production, and exotherm generation was also explored.  相似文献   

20.
Flow reactor experiments and X-ray photoelectron spectroscopy (XPS) measurements were used to investigate the importance of platinum oxide formation on Pt/BaO/Al2O3 NO x storage catalysts during reactions conditions. The reaction studied was NO(g) + 1/2 O2(g) NO2(g). During NO2 exposure of the catalyst the NO2 dissociation rate decreased during the reaction. This activity decrease with time was also studied with XPS and it was found to be due to platinum oxide formation. The influence of sulphur exposure conditions on the performance of the NO x storage catalysts was studied by exposing the samples to lean and/or rich gas mixtures, simulating the conditions in a mixed lean application, containing SO2. The main results show that all samples are sensitive to sulphur and that the deactivation proceeds faster when SO2 is present in the feed under rich conditions than under lean or continuous SO2 exposure. Additionally, the influence of the noble metals present in the catalysts was investigated regarding sulphur sensitivity and it was found that a combination of platinum and rhodium seems to be preferable to retain high performance of the catalyst under SO2 exposure and subsequent regeneration. Finally, the behaviour of micro-fabricated model NO x storage catalysts was studied as a function of temperature and gas composition with area-resolved XPS. These model catalysts consisted of a thin film of Pt deposited on one-half of a BaCO3 pellet. It was found that the combination of SO2 and O2 resulted in migration of Pt on the BaCO3 support up to one mm away from the Pt/BaCO3 interface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号