首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
针对光核心传送网中单纤场景下的路由选择与波长分配(Routing and Wavelength Assignment,RWA)问题,提出了一种邻域加权累积的波长分配策略。在一条路径上为一个连接请求选择波长时,将网络的所有链路归入当前路径的不同邻域中,然后根据与路径之间的距离为不同邻域赋予不同的权重,进而对每个波长在全网中被占用的个数进行加权累积,最后选择累积值最大的可用波长建立连接。仿真结果表明,相对于现有的阻塞率最低的最大使用(Most-Used)波长分配策略,所提策略具有更低的阻塞率。  相似文献   

2.
Considers routing connections in a reconfigurable optical network using WDM. Each connection between a pair of nodes in the network is assigned a path through the network and a wavelength on that path, such that connections whose paths share a common link in the network are assigned different wavelengths. The authors derive an upper bound on the carried traffic of connections (or equivalently, a lower bound on the blocking probability) for any routing and wavelength assignment (RWA) algorithm in such a network. The bound scales with the number of wavelengths and is achieved asymptotically (when a large number of wavelengths is available) by a fixed RWA algorithm. The bound can be used as a metric against which the performance of different RWA algorithms can be compared for networks of moderate size. The authors illustrate this by comparing the performance of a simple shortest-path RWA (SP-RWA) algorithm via simulation relative to the bound. They also derive a similar bound for optical networks using dynamic wavelength converters, which are equivalent to circuit-switched telephone networks, and compare the two cases. Finally, they quantify the amount of wavelength reuse achievable in large networks using the SP-RWA via simulation as a function of the number of wavelengths, number of edges, and number of nodes for randomly constructed networks as well as de Bruijn networks. They also quantify the difference in wavelength reuse between two different optical node architectures  相似文献   

3.
This paper studies the connection-assignment problem for a time-division-multiplexed (TDM) wavelength-routed (WR) optical wavelength-division-multiplexing (WDM) network. In a conventional WR network, an entire wavelength is assigned to a given connection (or session). This can lead to lower channel utilization when individual sessions do not need the entire channel bandwidth. This paper considers a TDM-based approach to reduce this inefficiency, where multiple connections are multiplexed onto each wavelength channel. The resultant network is a TDM-based WR network (TWRN), where the wavelength bandwidth is partitioned into fixed-length time slots organized as a fixed-length frame. Provisioning a connection in such a network involves determining a time-slot assignment, in addition to the route and wavelength. This problem is defined as the routing, wavelength, and time-slot-assignment (RWTA) problem. In this paper, we present a family of RWTA algorithms and study the resulting blocking performance. For routing, we use the existing shortest path routing algorithm with a new link cost function called least resistance weight (LRW) function, which incorporates wavelength-utilization information. For wavelength assignment, we employ the existing least loaded (LL) wavelength selection; and for time-slot allocation, we present the LL time-slot (LLT) algorithm with different variations. Simulation-based analyses are used to compare the proposed TDM architecture to traditional WR networks, both with and without wavelength conversion. The objective is to compare the benefits of TDM and wavelength conversion, relative to WR networks, towards improving performance. The results show that the use of TDM provides substantial gains, especially for multifiber networks.  相似文献   

4.
提出了一种在WDM网络中基于优先级的多任务波长路由分配算法。算法设计旨在提高光网络资源的利用率、降低网络请求阻塞率。分析了任务请求的路由类型以及负载容量对请求优先级划分的影响方式,给出了网络请求优先级划分策略,结合网络的实时状态提出了一种基于优先级的多任务波长路由分配算法。仿真结果表明,该算法相比现有算法降低了网络请求阻塞率,提高了资源利用率。  相似文献   

5.
Optical dense wavelength division multiplexed (DWDM) networks are an attractive candidate for the next generation Internet and beyond. In this paper, we consider routing and wavelength assignment in a wide area wavelength routed backbone network that employs circuit-switching. When a session request is received by the network, the routing and wavelength assignment (RWA) task is to establish a lightpath between the source and destination. That is, determine a suitable path and assign a set of wavelengths for the links on this path. We consider a link state protocol approach and use Dijkstras shortest path algorithm, suitably modified for DWDM networks, for computing the shortest paths. In [1] we proposed WDM aware weight functions that included factors such as available wavelengths per link, total wavelengths per link. In this paper, we present new weight functions that exploit the strong correlation between blocking probability and number of hops involved in connection setup to increase the performance of the network. We also consider alternate path routing that computes the alternate paths based on WDM aware weight functions. The impact of the weight functions on the blocking probability and delay is studied through discrete event simulation. The system parameters varied include number of network nodes, wavelengths, degree of wavelength conversion, and load. The results show that the weight function that incorporates both hop count and available wavelength provides the best performance in terms of blocking probability.  相似文献   

6.
In this paper, we study routing and wavelength assignment of connection requests in survivable WDM optical mesh networks employing shared path protection with partial wavelength conversion while 100% restorability is guaranteed against any single failures. We formulate the problem as a linear integer program under a static traffic model. The objective is to minimize the total cost of wavelength-links and wavelength converters used by working paths and protection paths of all connections. A weight factor is used which is defined as the cost ratio of a wavelength converter and a wavelength-link. Depending on the relative cost of bandwidth and wavelength conversion, the optimization objective allows a proper tradeoff between the two. The proposed algorithm, the shortest-widest-path-first (SWPF) algorithm, uses a modified Dijkstra's algorithm to find a working path and a protection path for each connection request in the wavelength graph transformed from the original network topology. When there are multiple candidate paths that have the same minimum total cost, the path along which the maximum number of converters used at each node is minimized is chosen by the SWPF algorithm. We have evaluated the effectiveness of the proposed algorithm via extensive simulation. The results indicate that the performance of the proposed algorithm is very close to that of the optimal solutions obtained by solving the ILP formulation and outperforms existing heuristic algorithms in terms of total number of converters used and the maximum number of converters required at each node in the network. The proposed algorithm also achieves slightly better performance in terms of total cost of wavelength-links and converters used by all connections. We also investigated shared path protection employing converter sharing. The results show that the technique can reduce not only the total number of converters used in the network but also the maximum number of converters required at each node, especially when a large number of converters are needed in the network. In this study, although the ILP formulation is based on static traffic, the proposed algorithm is also applicable to routing dynamic connection requests.  相似文献   

7.
There are two steps to establish a multicast connection in WDM networks: routing and wavelength assignment. The shortest path tree (SPT) and minimum spanning tree (MST) are the two widely used multicast routing methods. The SPT method minimizes the delay from the source to every destination along a routing tree, and the MST method is often used to minimize the network cost of the tree. Load balancing is an important objective in multicast routing, which minimizes the maximal link load in the system. The objective of wavelength assignment is to minimize the number of wavelengths used in the system. This paper analyzes the performance of the shortest path tree (SPT) and minimum spanning tree (MST) methods in the tree of ring networks, regarding the performance criteria such as the delay and network cost of the generated routing trees, load balancing, and the number of wavelengths required in the system. We prove that SPT and MST methods can not only produce routing trees with low network costs and short delays, but also have good competitive ratios for the load balancing problem (LBP) and wavelength assignment problem (WAP), respectively  相似文献   

8.
This study presents a wavelength-routing scheme with spare reconfiguration (SR) to construct dependable all-optical wavelength-division-multiplexing (WDM) networks. Path protection using shared spare lightpaths is a general wavelength-routing method for reducing blocking probability while minimizing demand for spare resources. However, in a dynamic traffic environment, this method may still yield a poor performance because a wavelength on a link is very likely to be continuously held by a spare lightpath and to be unable to be assigned to the working lightpath of a new connection. This study develops a spare reconfiguration mechanism with wavelength reassignment (SR/spl I.bar/WR) and path reassignment (SR/spl I.bar/PR) to make the spare dynamic and thus further reduce the blocking probability. The proposed wavelength routing with SR proceeds in three stages and has polynomial time complexity. Extensive simulation experiments were conducted on the NSFNET and the K5 fully connected network to investigate the performance of the proposed wavelength routing with SR. Results of this study show that the proposed wavelength routing with SR can reduce the blocking probability compared with the general wavelength routing with just shared spare lightpaths by choosing a positive tuning cost. In addition, the improvement of the blocking performance is maximized when using SR/spl I.bar/WR followed by SR/spl I.bar/PR.  相似文献   

9.
The increased usage of large bandwidth in optical networks raises the problems of efficient routing to allow these networks to deliver fast data transmission with low blocking probabilities. Due to limited optical buffering in optical switches and constraints of high switching speeds, data transmitted over optical networks must be routed without waiting queues along a path from source to destination. Moreover, in optical networks deprived of wavelength converters, it is necessary for each established path to transfer data from source to destination by using only one wavelength. To solve this NP-hard problem, many algorithms have been proposed for dynamic optical routing like Fixed-Paths Least Congested (FPLC) routing or Least Loaded Path Routing (LLR). This paper proposes two heuristic algorithms based on former algorithms to improve network throughput and reduce blocking probabilities of data transmitted in all-optical networks with regard to connection costs. We also introduce new criteria to estimate network congestion and choose better routing paths. Experimental results in ring networks show that both new algorithms achieve promising performance.  相似文献   

10.
一种基于ASON的新型动态恢复路径建链协议   总被引:4,自引:3,他引:1  
讨论了动态波长路由光网络的恢复路径提供问题,在联合可变权重路由选择(JVWR)算法的基础上重点对恢复路径建立时延进行了分析,通过对恢复路径建立过程中的非物理资源相关因素的考虑,基于ASON控制平面的分布式信令协议提出了前向并行建链协议(FPLSP)。理论分析和仿真实验表明,该建链协议对于减少恢复路径链路建立时延具有明显的效果。  相似文献   

11.
An Ant-Based Approach for Dynamic RWA in Optical WDM Networks   总被引:1,自引:0,他引:1  
In this paper, we propose a new ant-based algorithm for the dynamic routing and wavelength assignment (RWA) problem in optical WDM networks under the wavelength continuity constraint. Unlike conventional approaches, which usually require centralized global network information, our new RWA algorithm constructs the routing solution in a distributed manner by means of cooperative ants. To facilitate the ants’ foraging task, we adopt in our algorithm a probabilistic routing table structure for route selection. The new algorithm is highly adaptive in that it always keeps a suitable number of ants in the network to cooperatively explore the network states and continuously update the routing tables, so that the route for a connection request can be determined promptly by the current states of routing tables with only a small setup delay. Some new schemes for path scoring and path searching are also proposed to enhance the performance of our ant-based algorithm. Extensive simulation results upon three typical network topologies indicate that the proposed algorithm has a very good adaptability to traffic variations and it outperforms both the fixed routing algorithm and the promising fixed–alternate routing algorithm in terms of blocking probability. The ability to guarantee both a low blocking probability and a small setup delay makes the new ant-based routing algorithm very attractive for both the optical circuit switching networks and future optical burst switching networks  相似文献   

12.
研究了网状波分复用(WDM)网中动态生存性路由配备问题,提出了一种新颖的基于共享风险链路组(SRLG)束的混合共享通路保护(MSPP)方案。MSPP为每个业务请求分配丁作通路和SRLG分离的保护通路,因此能完全保护单SRLG故障。与传统的共享通路保护(SPP)方案不同,在满足某些约束条件下,MSPP允许部分工作通路和保护通路共享资源。仿真结果表明,MSPP性能优于SPP。  相似文献   

13.
石晓东  李勇军  赵尚弘  王蔚龙 《红外与激光工程》2020,49(10):20200125-1-20200125-8
针对卫星光网络中网络拓扑动态时变和业务类型多样化的问题,研究了在软件定义网络架构下保障服务质量的路由技术,提出了一种基于多业务的卫星光网络蚁群优化波长路由算法。通过改进蚁群算法的启发函数,将波长空闲率、时延、时延抖动、丢包率作为蚂蚁选路的重要依据,为业务选择了满足多种服务质量的最优路径;采用分组波长分配方法对不同等级的业务进行了区分服务,为不同业务分配了不同的波长集。仿真结果表明:与CL-ACRWA算法和Dijkstra算法相比,降低了卫星光网络的平均时延、平均时延抖动、平均丢包率,提高了波长利用率,同时也降低了高优先级业务的网络拥塞概率。  相似文献   

14.
Consider an optical network which employs wavelength-routing crossconnects that enable the establishment of wavelength-division-multiplexed (WDM) connections between node pairs. In such a network, when there is no wavelength conversion, a connection is constrained to be on the same wavelength channel along its route. Alternate routing can improve the blocking performance of such a network by providing multiple possible paths between node pairs. Wavelength conversion can also improve the blocking performance of such a network by allowing a connection to use different wavelengths along its route. This work proposes an approximate analytical model that incorporates alternate routing and sparse wavelength conversion. We perform simulation studies of the relationships between alternate routing and wavelength conversion on three representative network topologies. We demonstrate that alternate routing generally provides significant benefits, and that it is important to design alternate routes between node pairs in an optimized fashion to exploit the connectivity of the network topology. The empirical results also indicate that fixed-alternate routing with a small number of alternate routes asymptotically approaches adaptive routing in blocking performance  相似文献   

15.
In this paper, a novel fuzzy dynamic routing and wavelength assignment technique is proposed for a wavelength division multiplexing optical network to achieve the best quality of network transmission. This paper proposes a novel quality of service aware fuzzy logic controlled dynamic routing and wavelength assignment algorithm (QoS-FDRWA), where the optimum path is chosen by a fuzzy rule-based inference system. The proposed fuzzy routing technique incorporates optical network transmission attributes such as latency, physical length of the link, data packet loss, number of hops, and wavelength availability status in the path.  相似文献   

16.
何荣希  张治中  李乐民  王晟 《电子学报》2002,30(11):1638-1642
本文研究了IP/MPLS over WDM网中,如何建立两条共享风险链路组(SRLG)分离的标记交换路径(LSP)问题,提出一种新的基于SRLG分离的共享通路保护算法.该算法既可以保证用户业务的可靠性要求,同时又能够有效提高全网的资源利用率,从而大大降低全网LSP建立请求的阻塞率.本文还对所提算法进行了仿真研究,并给出了仿真结果.  相似文献   

17.
《Optical Fiber Technology》2007,13(3):191-197
We consider the routing and wavelength assignment (RWA) problem on wavelength division multiplexing (WDM) networks without wavelength conversion. When the physical network and required connections are given, RWA is the problem to select a suitable path and wavelength among the many possible choices for each connection such that no two paths using the same wavelength pass through the same link. In WDM optical networks, there is need to maximize the number of connections established and to minimize the blocking probability using limited resources. This paper presents efficient RWA strategies, which minimizes the blocking probability. Simulation results show that the performance of the proposed strategies is much better than the existing strategy.  相似文献   

18.
The impact of transmission related issues on the routing strategies for transparent all-optical wavelength division multiplexed (WDM) transport networks is analyzed in this paper. Three different categories of routing algorithms are analyzed: algorithms based on the wavelength path (WP) strategy, based on the virtual wavelength path (VWP) strategy and requiring only a limited number of wavelength converters in the network partial virtual wavelength path (PVWP). It results that the PVWP allows a saving in network devices with respect to the WP similar those permitted by the VWP also attaining transmission performances near those attained by the WP that are quite better that those attained by the VWP  相似文献   

19.
We propose a routing strategy in which connection requests with specific bandwidth demands can be assigned to one of several alternative paths connecting the source to the destination. The primary goal of this multiple‐path approach is to compensate for the inaccuracy of the knowledge available to routing nodes, caused by the limited frequency of link state (LS) information exchanges. We introduce a collection of K‐shortest path routing schemes and investigate their performance under a variety of traffic conditions and network configurations. We subsequently demonstrate that K‐shortest path routing offers a lower blocking probability in all scenarios and more balanced link utilization than other routing methods discussed in the literature. With our approach, it is possible to reduce the frequency of link state exchanges, and the incurred bandwidth overhead, without compromising the overall performance of the network. Based on the proposed routing scheme, we investigate different link state dissemination algorithms, which are aimed at reducing the communication overhead by prioritizing the scope and differentiating the qualitative content of LS update messages. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

20.
In this paper, we propose and evaluate a new approach for implementing efficient routing and wavelength assignment (RWA) in wavelength division multiplexing (WDM) optical networks. In our method, the state of a fiber is given by the set of free wavelengths in this fiber and is efficiently represented as a compact bitmap. The state of a multiple-fiber link is also represented by a compact bitmap computed as the logical union of the individual bitmaps of the fibers in this link. Likewise, the state of a lightpath is represented by a similar bitmap computed as the logical intersection of the individual bitmaps of the links in this path. The count of the number of 1-valued bits in the bitmap of the route from source to destination is used as the primary reward function in route selection. A modified Dijkstra algorithm is developed for dynamic routing based on the bitmap representation. The algorithm uses bitwise logical operations and is quite efficient. A first-fit channel assignment algorithm is developed using a simple computation on the bitmap of the selected route. The resulting bitwise routing algorithm combines the benefits of least loaded routing algorithms and shortest path routing algorithms. Our extensive simulation tests have shown that the bitwise RWA approach has small storage overhead, is computationally fast, and reduces the network-wide blocking probability. The blocking performance of our RWA method compares very favorably with three routing methods: fixed alternate routing, shortest path using flooding, and Dijkstra’s algorithm using mathematical operations. Our simulation experiments have also evaluated the performance gain obtained when the network access stations are equipped with finite buffers to temporarily hold blocked connection requests.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号