首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Case-based reasoning (CBR) algorithm is particularly suitable for solving ill-defined and unstructured decision-making problems in many different areas. The traditional CBR algorithm, however, is inappropriate to deal with complicated problems and therefore needs to be further revised. This study thus proposes a next-generation CBR (GCBR) model and algorithm. GCBR presents as a new problem-solving paradigm that is a case-based recommender mechanism for assisting decision making. GCBR can resolve decision-making problems by using hierarchical criteria architecture (HCA) problem representation which involves multiple decision objectives on each level of hierarchical, multiple-level decision criteria, thereby enables decision makers to identify problems more precisely. Additionally, the proposed GCBR can also provide decision makers with series of cases in support of these multiple decision-making stages. GCBR furthermore employs a genetic algorithm in its implementation in order to reduce the effort involved in case evaluation. This study found experimentally that using GCBR for making travel-planning recommendations involved approximately 80% effort than traditional CBR, and therefore concluded that GCBR should be the next generation of case-based reasoning algorithms and can be applied to actual case-based recommender mechanism implementation.  相似文献   

2.
A case-based reasoning approach to planning for disassembly   总被引:1,自引:0,他引:1  
With recycling regulations, resource conservation needs and an increased awareness of the state of the environment by both the consumer and the producer, many companies are establishing disassembly plants and developing product designs that specifically facilitate disassembly. Once disassembled, the items can be reused, recycled or discarded. One can identify two distinct aspects of the disassembly problem: design for disassembly (DFD) and planning for disassembly (PFD). The goal of DFD is to design products that are easy to disassemble. On the other hand, the objective of PFD is to identify efficient sequences to disassemble products. This paper focuses on the PFD aspect of disassembly. Because there could be many ways to disassemble a given product, PFD knowledge is accumulated by experience. Such knowledge is valuable, and should be captured, saved and reused to solve similar problems that arise in the future. In this paper, we propose case-based reasoning (CBR) as an approach to solve PFD problems. CBR is based on the fundamental principle that problem solving can benefit from solutions to past problems that have been attempted. The technique and issues related to the application of CBR to PFD are presented.  相似文献   

3.
Case-Based Reasoning is a methodology for problem solving based on past experiences. This methodology tries to solve a new problem by retrieving and adapting previously known solutions of similar problems. However, retrieved solutions, in general, require adaptations in order to be applied to new contexts. One of the major challenges in Case-Based Reasoning is the development of an efficient methodology for case adaptation. The most widely used form of adaptation employs hand coded adaptation rules, which demands a significant knowledge acquisition and engineering effort. An alternative to overcome the difficulties associated with the acquisition of knowledge for case adaptation has been the use of hybrid approaches and automatic learning algorithms for the acquisition of the knowledge used for the adaptation. We investigate the use of hybrid approaches for case adaptation employing Machine Learning algorithms. The approaches investigated how to automatically learn adaptation knowledge from a case base and apply it to adapt retrieved solutions. In order to verify the potential of the proposed approaches, they are experimentally compared with individual Machine Learning techniques. The results obtained indicate the potential of these approaches as an efficient approach for acquiring case adaptation knowledge. They show that the combination of Instance-Based Learning and Inductive Learning paradigms and the use of a data set of adaptation patterns yield adaptations of the retrieved solutions with high predictive accuracy.  相似文献   

4.
A case-based reasoning system for PCB defect prediction   总被引:1,自引:0,他引:1  
The manufacturing process for a new Printed Circuit Board (PCB) design is often instable and might generate a number of defects during the complicated production process. Defects reduce the yield rate and increase the production costs. Although skilled engineers can predict the possible defect items for a new PCB product, this approach requires strong engineering experience and is time consuming. To conquer this problem, this research applies case-based reasoning (CBR) methodology to develop a defect prediction system for new PCB products. In the CBR system, each case is represented using the design specifications, defect items and corresponding costs. A vantage-based case indexing mechanism is developed to accelerate the case retrieval efficiency. In addition, a reasoning algorithm that considers the defect cost is proposed to infer the defect items that are interesting to PCB manufacturers. The system performance is analyzed to show the efficiency and accuracy of the proposed system. A practical implementation using a case-base provided by a PCB manufacturer is demonstrated.  相似文献   

5.
A case-based reasoning approach for automating disassembly process planning   总被引:8,自引:0,他引:8  
One of the first processes for preparing a product for reuse, remanufacture or recycle is disassembly. Disassembly is the process of systematic removal of desirable constituents from the original assembly so that there is no impairment to any useful component. As the number of components in a product increases, the time required for disassembly, as well as the complexity of planning for disassembly rises. Thus, it is important to have the capability to generate disassembly process plans quickly in order to prevent interruptions in processing especially when multiple products are involved. Case-based reasoning (CBR) approach can provide such a capability. CBR allows a process planner to rapidly retrieve, reuse, revise, and retain solutions to past disassembly problems. Once a planning problem has been solved and stored in the case memory, a planner can retrieve and reuse the product's disassembly process plan at any time. The planner can also adapt an original plan for a new product, which does not have an existing plan in case memory. Following adaptation and application, a successful plan is retained in the case memory for future use. This paper presents the procedures to initialize a case memory for different product platforms, and to operate a CBR system, which can be used to plan disassembly processes. The procedures are illustrated using examples.  相似文献   

6.
An empirical study of predicting software faults with case-based reasoning   总被引:1,自引:0,他引:1  
The resources allocated for software quality assurance and improvement have not increased with the ever-increasing need for better software quality. A targeted software quality inspection can detect faulty modules and reduce the number of faults occurring during operations. We present a software fault prediction modeling approach with case-based reasoning (CBR), a part of the computational intelligence field focusing on automated reasoning processes. A CBR system functions as a software fault prediction model by quantifying, for a module under development, the expected number of faults based on similar modules that were previously developed. Such a system is composed of a similarity function, the number of nearest neighbor cases used for fault prediction, and a solution algorithm. The selection of a particular similarity function and solution algorithm may affect the performance accuracy of a CBR-based software fault prediction system. This paper presents an empirical study investigating the effects of using three different similarity functions and two different solution algorithms on the prediction accuracy of our CBR system. The influence of varying the number of nearest neighbor cases on the performance accuracy is also explored. Moreover, the benefits of using metric-selection procedures for our CBR system is also evaluated. Case studies of a large legacy telecommunications system are used for our analysis. It is observed that the CBR system using the Mahalanobis distance similarity function and the inverse distance weighted solution algorithm yielded the best fault prediction. In addition, the CBR models have better performance than models based on multiple linear regression. Taghi M. Khoshgoftaar is a professor of the Department of Computer Science and Engineering, Florida Atlantic University and the Director of the Empirical Software Engineering Laboratory. His research interests are in software engineering, software metrics, software reliability and quality engineering, computational intelligence, computer performance evaluation, data mining, and statistical modeling. He has published more than 200 refereed papers in these areas. He has been a principal investigator and project leader in a number of projects with industry, government, and other research-sponsoring agencies. He is a member of the Association for Computing Machinery, the IEEE Computer Society, and IEEE Reliability Society. He served as the general chair of the 1999 International Symposium on Software Reliability Engineering (ISSRE’99), and the general chair of the 2001 International Conference on Engineering of Computer Based Systems. Also, he has served on technical program committees of various international conferences, symposia, and workshops. He has served as North American editor of the Software Quality Journal, and is on the editorial boards of the journals Empirical Software Engineering, Software Quality, and Fuzzy Systems. Naeem Seliya received the M.S. degree in Computer Science from Florida Atlantic University, Boca Raton, FL, USA, in 2001. He is currently a Ph.D. candidate in the Department of Computer Science and Engineering at Florida Atlantic University. His research interests include software engineering, computational intelligence, data mining, software measurement, software reliability and quality engineering, software architecture, computer data security, and network intrusion detection. He is a student member of the IEEE Computer Society and the Association for Computing Machinery.  相似文献   

7.
Injection molding has been a preferred production process in the fabrication of complex components. In this technique not only the injection machine and mold play important roles, but also different process parameters have strong effects on the quality of the final products. The production process might be stopped because of different types of faults on the production line. In this paper, a case-based reasoning (CBR) methodology is employed to implement an intelligent fault detection system for the production of injection molded drippers. This CBR system utilizes similar occurred faults to solve particular new problems. Case retrieval and similarity measurements are defined based on fault occurrence weight of features (fault’s causes). Application and accuracy of the proposed system are experimentally tested and validated through analyzing the current case study. The obtained results indicated that the implemented CBR system is able to detect the faults on the injection molding machine. By utilizing the proposed system machine downtime is reduced, speeded production with high productivity is achieved.  相似文献   

8.
Case-Based Reasoning (CBR) systems support ill-structured decision making. In ill-structured decision environments, decision makers (DMs) differ in their problem solving approaches. As a result, CBR systems would be more useful if they were able to adapt to the idiosyncrasies of individual decision makers. Existing implementations of CBR systems have been mainly symbolic, and symbolic CBR systems are unable to adapt to the preferences of decision makers (i.e., they are static). Retrieval of appropriate previous cases is critical to the success of a CBR system. Widely used symbolic retrieval functions, such as nearest-neighbor matching, assume independence of attributes and require specification of their importance for matching. To ameliorate these deficiencies connectionist systems have been proposed. However, these systems are limited in their ability to adapt and grow. To overcome this limitation, we propose a distributed connectionist-symbolic architecture that adapts to the preferences of a decision maker and that, additionally, ameliorates the limitations of symbolic matching. The proposed architecture uses a supervised learning technique to acquire the matching knowledge. The architecture allows the growth of a case base without the involvement of a knowledge engineer. Empirical investigation of the proposed architecture in an ill-structured diagnostic decision environment demonstrated a superior retrieval performance when compared to the nearest-neighbor matching function.  相似文献   

9.
Bayesian networks are knowledge representation schemes that can capture probabilistic relationships among variables and perform probabilistic inference. Arrival of new evidence propagates through the network until all variables are updated. At the end of propagation, the network becomes a static snapshot representing the state of the domain for that particular time. This weakness in capturing temporal semantics has limited the use of Bayesian networks to domains in which time dependency is not a critical factor. This paper describes a framework that combines Bayesian networks and case-based reasoning to create a knowledge representation scheme capable of dealing with time-varying processes. Static Bayesian network topologies are learned from previously available raw data and from sets of constraints describing significant events. These constraints are defined as sets of variables assuming significant values. As new data are gathered, dynamic changes to the topology of a Bayesian network are assimilated using techniques that combine single-value decomposition and minimum distance length. The new topologies are capable of forecasting the occurrences of significant events given specific conditions and monitoring changes over time. Since environment problems are good examples of temporal variations, the problem of forecasting ozone levels in Mexico City was used to test this framework.  相似文献   

10.
Natural language search engines should be developed to provide a friendly environment for business-to-consumer e-commerce that reduce the fatigue customers experience and help them decide what to buy. To support product information retrieval and reuse, this paper presents a novel framework for a case-based reasoning system that includes a collaborative filtering mechanism and a semantic-based case retrieval agent. Furthermore, the case retrieval agent integrates short-text semantic similarity (STSS) and recognizing textual entailment (RTE). The proposed approach was evaluated using competitive methods in the performance of STSS and RTE, and according to the results, the proposed approach outperforms most previously described approaches. Finally, the effectiveness of the proposed approach was investigated using a case study of an online bookstore, and according to the results of case study, the proposed approach outperforms a compared system using string similarity and an existing e-commerce system, Amazon.  相似文献   

11.
The Printed Circuit Board (PCB) manufacturing process usually consists of lengthy production activities. Each activity is controlled by a number of process parameters. Although numerous process parameters must be determined before fabrication, only a number of parameters called principal process parameters because they affect the quality of a PCB product. As long as the principal process parameters are identified efficiently and controlled well, the manufacturing lead-time can be shortened and the quality of the new PCB product can be assured. This research proposes a Case-Based Reasoning (CBR) system to infer the principal process parameters for a new PCB product. Each case in the case-base stores design specifications, process parameters, and the corresponding production quality specifications. A Significant Nearest Neighbor (SNN) search is developed to retrieve similar cases from a case-base. A Mutual Correlation Parameter Selection (MCPS) method and a correlation-based parameter setting method are developed to identify the principal parameters and infer their reasonable value range. A set of experiments and a practical implementation case are demonstrated to show the efficiency and accuracy of the proposed system.  相似文献   

12.
Many studies have tried to optimize parameters of case-based reasoning (CBR) systems. Among them, selection of appropriate features to measure similarity between the input and stored cases more precisely, and selection of appropriate instances to eliminate noises which distort prediction have been popular. However, these approaches have been applied independently although their simultaneous optimization may improve the prediction performance synergetically. This study proposes a case-based reasoning system with the two-dimensional reduction technique. In this study, vertical and horizontal dimensions of the research data are reduced through our research model, the hybrid feature and instance selection process using genetic algorithms. We apply the proposed model to a case involving real-world customer classification which predicts customers’ buying behavior for a specific product using their demographic characteristics. Experimental results show that the proposed technique may improve the classification accuracy and outperform various optimized models of the typical CBR system.  相似文献   

13.
PurposeThe purpose of this research is to present a case-based analytic method for a service-oriented value chain and a sustainable network design considering customer, environmental and social values. Enterprises can enhance competitive advantage by providing more values to all stakeholders in the network.Design/methodology/approachOur model employs a stylized database to identify successful cases of value chain application under similar company marketing conditions, illustrating potential value chains and sustainable networks as references. This work first identifies economic benefits, environmental friendliness and social contribution values based on prior studies. Next, a search engine which is developed based on the rough set theory will search and map similarities to find similar or parallel cases in the database. Finally, a visualized network mapping will be automatically generated to possible value chains.FindingsThis study applies a case-based methodology to assist enterprises in developing a service-oriented value chain design. For decision makers, this can reduce survey time and inspire innovative works based on previous successful experience. Besides, successful ideas from prior cases can be reused. In addition to customer values, this methodology incorporates environment and social values that may encourage a company to build their value chain in a more comprehensive and sustainable manner.Research implicationsThis is a pilot study which attempts to utilize computer-aided methodology to assist in service or value-related design. The pertinent existing solutions can be filtered from an array of cases to engage the advantages from both product-oriented and service-oriented companies. Finally, the visualized display of value network is formed to illustrate the results.Practical implicationsA customized service-oriented value chains which incorporates environment and social values can be designed according to different conditions. Also, this system engages the advantages from both product-oriented and service-oriented companies to build a more comprehensive value network. Apart from this, the system can be utilized as a benchmarking tool, and it could remind the decision makers to consider potential value from a more multifaceted perspective.Originality/valueThis is the first paper that applied a computer-aided method to design service-oriented value chains. This work also can serve as a decision support and benchmarking system because decision makers can develop different value networks according to various emphasized values. Finally, the visualized display of value network can improve the communication among stakeholders.  相似文献   

14.
Statistical process control (SPC) is a sub-area of statistical quality control. Considering the successful results of the SPC applications in various manufacturing and service industries, this field has attracted a large number of experts. Despite the development of knowledge in this field, it is hard to find a comprehensive perspective or model covering such a broad area and most studies related to SPC have focused only on a limited part of this knowledge area. According to many implemented cases in statistical process control, case-based reasoning (CBR) systems have been used in this study for developing of a knowledge-based system (KBS) for SPC to organize this knowledge area. Case representation and retrieval play an important role to implement a CBR system. Thus, a format for representing cases of SPC and the similarity measures for case retrieval are proposed in this paper.  相似文献   

15.
Spam filtering is a text classification task to which Case-Based Reasoning (CBR) has been successfully applied. We describe the ECUE system, which classifies emails using a feature-based form of textual CBR. Then, we describe an alternative way to compute the distances between cases in a feature-free fashion, using a distance measure based on text compression. This distance measure has the advantages of having no set-up costs and being resilient to concept drift. We report an empirical comparison, which shows the feature-free approach to be more accurate than the feature-based system. These results are fairly robust over different compression algorithms in that we find that the accuracy when using a Lempel-Ziv compressor (GZip) is approximately the same as when using a statistical compressor (PPM). We note, however, that the feature-free systems take much longer to classify emails than the feature-based system. Improvements in the classification time of both kinds of systems can be obtained by applying case base editing algorithms, which aim to remove noisy and redundant cases from a case base while maintaining, or even improving, generalisation accuracy. We report empirical results using the Competence-Based Editing (CBE) technique. We show that CBE removes more cases when we use the distance measure based on text compression (without significant changes in generalisation accuracy) than it does when we use the feature-based approach.  相似文献   

16.
In ABC analysis, a well-known inventory planning and control technique, stock-keeping units (SKUs) are sorted into three categories. Traditionally, the sorting is based solely on annual dollar usage. The aim of this paper is to introduce a case-based multiple-criteria ABC analysis that improves on this approach by accounting for additional criteria, such as lead time and criticality of SKUs, thereby providing more managerial flexibility. Using decisions from cases as input, preferences over alternatives are represented intuitively using weighted Euclidean distances which can be easily understood by a decision maker. Then a quadratic optimization program finds optimal classification thresholds. This system of multiple criteria decision aid is demonstrated using an illustrative case study.  相似文献   

17.
Case-based reasoning (CBR) is one of the matured paradigms of artificial intelligence for problem solving. CBR has been applied in many areas in the commercial sector to assist daily operations. However, CBR is relatively new in the field of forensic science. Even though forensic personnel have consciously used past experiences in solving new cases, the idea of applying machine intelligence to support decision-making in forensics is still in its infancy and poses a great challenge. This paper highlights the limitation of the methods used in forensics compared with a CBR method in the analysis of forensic evidences. The design and development of an Intelligent Forensic Autopsy Report System (I-AuReSys) basing on a CBR method along with the experimental results are presented. Our system is able to extract features by using an information extraction (IE) technique from the existing autopsy reports; then the system analyzes the case similarities by coupling the CBR technique with a Naïve Bayes learner for feature-weights learning; and finally it produces an outcome recommendation. Our experimental results reveal that the CBR method with the implementation of a learner is indeed a viable alternative method to the forensic methods with practical advantages.  相似文献   

18.
Missing data in river flow records represent a loss of information and a serious drawback in water management. In this work, we introduce gapIt, a user-driven case-based reasoning tool for infilling gaps in daily mean river flow records. Given a set of flow time series, gapIt builds a database of artificial gaps for which it computes several flow estimates, to find the best combinations of infilling algorithm and automatically selected donor station(s), according to state-of-the-art performance indicators. We obtained satisfactory results with Nash-Sutcliffe >0.7 for more than half of the ∼5000 synthetic gaps of various lengths and positions, randomly created along the available records. gapIt was evaluated on 24 daily river discharge time series recorded in Luxembourg over seven years from 01/01/2007 to 31/12/2013. We also discuss the benefits of coupling this approach with user-expertise for an improved infilling of real data gaps.  相似文献   

19.
Locomotives, like many complex modern machines, are equipped with the capability to generate on-board fault messages indicating the presence of anomalous conditions. Such messages tend to be generated in large quantities, and are difficult and time consuming to interpret manually. This paper presents the design and development of a case-based reasoning system for diagnosing locomotive faults using such fault messages as input. The process of using historical repair data and expert input for case generation and validation is described. An algorithm for case matching is presented, along with some results on pilot data.  相似文献   

20.
Sensor signal fusion is becoming increasingly important in many areas including medical diagnosis and classification. Today, clinicians/experts often do the diagnosis of stress, sleepiness and tiredness on the basis of information collected from several physiological sensor signals. Since there are large individual variations when analyzing the sensor measurements and systems with single sensor, they could easily be vulnerable to uncertain noises/interferences in such domain; multiple sensors could provide more robust and reliable decision. Therefore, this paper presents a classification approach i.e. Multivariate Multiscale Entropy Analysis–Case-Based Reasoning (MMSE–CBR) that classifies physiological parameters of wheel loader operators by combining CBR approach with a data level fusion method named Multivariate Multiscale Entropy (MMSE). The MMSE algorithm supports complexity analysis of multivariate biological recordings by aggregating several sensor measurements e.g., Inter-beat-Interval (IBI) and Heart Rate (HR) from Electrocardiogram (ECG), Finger Temperature (FT), Skin Conductance (SC) and Respiration Rate (RR). Here, MMSE has been applied to extract features to formulate a case by fusing a number of physiological signals and the CBR approach is applied to classify the cases by retrieving most similar cases from the case library. Finally, the proposed approach i.e. MMSE–CBR has been evaluated with the data from professional drivers at Volvo Construction Equipment, Sweden. The results demonstrate that the proposed system that fuses information at data level could classify ‘stressed’ and ‘healthy’ subjects 83.33% correctly compare to an expert’s classification. Furthermore, with another data set the achieved accuracy (83.3%) indicates that it could also classify two different conditions ‘adapt’ (training) and ‘sharp’ (real-life driving) for the wheel loader operators. Thus, the new approach of MMSE–CBR could support in classification of operators and may be of interest to researchers developing systems based on information collected from different sensor sources.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号