首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
王述超  李琦 《粘接》2023,(3):60-64
采用快速模压成型法制备了建筑隔震碳纤维复合材料,研究了模压压力、加压温度和固化温度对碳纤维复合材料拉伸性能和摩擦性能的影响。结果表明,当模压压力从6 MPa上升至14 MPa时,碳纤维复合材料的拉伸强度和标准化拉伸强度都呈现先增加后减小,摩擦系数表现为先减小后增大;当加压温度从100℃上升至130℃时,碳纤维复合材料的拉伸强度和标准化拉伸强度都先增大后逐渐减小,摩擦系数表现为先减小后增大;当固化温度从130℃上升至160℃时,碳纤维复合材料的拉伸强度和标准化拉伸强度都先增大后逐渐减小,摩擦系数表现为先减小后增大的趋势。适宜的建筑隔震碳纤维复合材料制备工艺为:模压压力10 MPa、加压温度110℃、固化温度140℃。  相似文献   

2.
胡业明  简小女 《粘接》2024,(2):77-79+83
以环氧树脂和碳纤维为原料,采用模压成型工艺制备了汽车防抱制动装置用碳纤维复合材料,研究了模压压力、加压温度、固化温度和固化时间对碳纤维复合材料摩擦磨损性能的影响,并分析了其摩擦磨损机理。结果表明,当模压压力为10 MPa、加压温度为110℃、固化温度为140℃、固化时间为30 min时,汽车防抱制动装置用碳纤维复合材料的摩擦系数较小,到达磨合期较短,具有良好的耐磨性能,为适宜的模压成型工艺。可以通过调整模压成型工艺参数,制备出耐磨性能良好的汽车防抱制动装置用碳纤维复合材料。  相似文献   

3.
研究了模压温度、模压压力和模压时间对健身器械用碳纤维/聚碳酸酯复合材料宏观形貌、0°和45°方向拉伸性能和冲击性能的影响。结果表明,随着模压温度的升高,碳纤维/聚碳酸酯复合材料的拉伸强度和冲击功呈现先增加而后减小的特征,在模压温度为240℃时取得最大值;随着模压压力的升高,碳纤维/聚碳酸酯复合材料在0°和45°方向的拉伸强度都呈现先增加而后减小的特征,当模压压力为6MPa,碳纤维/聚碳酸酯复合材料具有最佳拉伸强度和冲击韧性结合。随着模压时间的延长,碳纤维/聚碳酸酯复合材料在0°和45°方向的拉伸强度都呈现先增加而后减小的特征,在模压时间为10min时取得最大值。碳纤维/聚碳酸酯复合材料的适宜的模压成型工艺参数为:模压温度240℃、模压压力6MPa、模压时间10min。  相似文献   

4.
任泽 《粘接》2022,(6):55-58
采用薄膜层叠模压成型工艺制备铁路建设轨枕用高性能碳纤维织物/聚碳酸酯复合材料,研究模压温度、模压压力和模压时间对复合材料宏观形貌、拉伸性能和冲击性能的影响。结果表明,从碳纤维/聚碳酸脂复合材料的宏观形貌上看,模压温度、模压压力和模压时间分别应该控制在245℃及以下、6 MPa及以下和10 min及以下;从碳纤维/聚碳酸酯复合材料的力学性能上看,轨枕用高性能复合材料的最佳制备工艺:模压温度245℃、模压压力6 MPa、模压时间10 min,复合材料的0°、45°拉伸强度分别为377、99 MPa,冲击功为1.36 J。  相似文献   

5.
芳纶短纤维/聚氨酯树脂复合材料成型工艺研究   总被引:3,自引:0,他引:3  
成型工艺直接影响复合材料的性能。本文考察了芳纶短纤维/聚氨酯树脂复合材料模压成型工艺的预成型时间、模压温度、模压压强、模压时间等因素对复合材料拉伸强度的影响。结果表明,预成型时间4h,模压温度170℃,模压压强为4MPa,模压时间为30m in的工艺条件下可制备拉伸强度为35 MPa的芳纶短纤维/聚氨酯树脂复合材料。  相似文献   

6.
杨培娟  黄健 《塑料》2014,(3):85-88
首次提出以玄武岩纤维增强热塑性聚酰亚胺,通过热模压工艺制备复合材料,通过考察成型工艺对冲击性能的影响,优化了成型工艺参数,即模压温度在360℃、压力在20 MPa、保压时间在30 min。在此基础上,进一步考察纤维含量对拉伸强度、断裂伸长率和弯曲强度的影响,结果发现:随着玄武岩纤维用量的增加,复合材料拉伸强度不断增大,但断裂伸长率下降,弯曲强度随着玄武岩用量增加而增大,表明复合材料刚性得到增强。考察了复合材料的阻燃性能,发现复合材料阻燃性能达到V0级,而且极限氧指数随着纤维用量增加,稍微增大,表明阻燃性能有一定提高。为汽车用摩擦材料提供一条思路。  相似文献   

7.
根据金属基复合材料结构特点和性能要求,设计了相应的实验方案,并进行压制成型实验,在压制成型过程中采用不同的压力、温度、时间进行实验,制备了结合强度高的金属基复合材料。通过拉伸试验,研究了压力、温度以及时间3个工艺参数与复合材料结合性能之间的关系。结果表明,当复合材料模压成型压力为8~9 MPa,成型温度为320~330℃,成型时间为30~35 min时,复合材料的结合强度最佳。  相似文献   

8.
针对改性双马树脂T700级预浸料微波固化成型工艺,研究了保温时间、加压方式、升温速率对复合材料力学性能的影响,获得了不同条件下的微波固化复合材料的性能数据和较优的成型工艺方案;对比研究了不同加热方式对复合材料力学性能的影响。研究表明,微波固化样件的压缩强度、弯曲强度、拉伸模量和150℃干态弯曲性能都达到了热压罐水平,而拉伸强度、层间剪切强度和150℃干态层剪性能低于热压罐水平。微波固化工艺加热均匀,相对于热压罐成型,固化周期缩短50%以上,能有效提升复合材料制造效率,降低能耗。  相似文献   

9.
采用常规性能分析、傅里叶变换红外光谱分析、差示扫描量热分析、热重分析、凝胶渗透色谱分析等对模压高碳酚醛树脂进行表征,通过模压成型分别制备了碳纤维和高硅氧纤维增强模压高碳酚醛树脂复合材料,测试了不同成型压力下两种复合材料的力学性能和耐烧蚀性能,最后通过超声无损检测方法对复合材料密实度进行表征。结果表明,模压高碳酚醛树脂苯环上以邻位取代为主,其游离酚和游离醛含量较低,180℃的凝胶时间低于50 s,适用于较高温度下的快速模压成型工艺;该树脂分子量小,对纤维的浸润性好,适宜的固化温度为(190±5)℃,900℃的残炭率可达67.13%。随成型压力增加,碳纤维和高硅氧纤维增强复合材料的拉伸和弯曲性能均逐渐提高,但当成型压力大于45 MPa后,增加趋势变缓;当成型压力为45 MPa时,两种复合材料具有最好的耐烧蚀性能,其中碳纤维增强复合材料的线烧蚀率和质量烧蚀率分别为0.006 8 mm/s和0.055 9 g/s,高硅氧纤维增强复合材料的线烧蚀率和质量烧蚀率分别为0.116 4 mm/s和0.070 8 g/s。通过超声无损检测方法可以初步判断碳纤维增强复合材料的密实度。  相似文献   

10.
采用Minitab软件设计某胶粘剂真空加压成型工艺参数组合试验,研究真空加压成型工艺参数对胶粘剂拉伸强度的影响。通过对黏稠度(0.3%~0.5%)、真空加压固化时间(6~12 h)、真空加压固化压力(0.04~0.06 MPa)三个因素考察,建立拉伸强度为响应目标的响应曲面数学模型,优化和验证胶粘剂拉伸强度,获得综合性能较佳的工艺参数。R-Sq与R-Sq(调整)比较接近,表明模型的拟合效果显著,为成型工艺参数的确定提供理论依据和指导。研究结果表明:黏稠度对拉伸强度有极显著影响,在试验粘接成型工艺参数设定范围内,拉伸强度的预测值是0.5~0.8 MPa。通过模型优化得到加压成型工艺参数组合:黏稠度为0.488 2%,真空加压时间为6.0 h,真空加压固化压力为0.04 MPa。此时胶粘剂的综合性能较佳,相应拉伸强度预测值为0.70 MPa。并根据不同角度复合材料表面使用的实际工况,研究了胶粘剂的流动性控制方法,确保粘接质量。  相似文献   

11.
研究了成型温度和成型压力对兵乓球拍用碳纤维复合材料弯曲强度、弯曲模量和拉伸强度的影响,并对断口形貌进行了观察。结果表明,随着成型温度和成型压力的增大,碳纤维复合材料的弯曲强度和弯曲模量都呈现先增加而后减小特征,在成型温度为380℃、成型压力为4.7MPa时取得弯曲强度和弯曲模量最大值。随着成型温度和成型压力的增大,碳纤维复合材料的拉伸强度呈现先增加而后减小特征,在成型温度为380℃、成型压力为4.7MPa时取得拉伸强度最大值,为1.71GPa。碳纤维复合材料适宜的成型工艺为:成型温度380℃、成型压力4.7MPa。  相似文献   

12.
采用正交试验方法,用5%Na OH溶液对黄麻毡进行预处理,利用模压成型工艺制备酚醛树脂/黄麻纤维复合材料,通过对正交试验结果进行极差分析和方差分析,研究树脂含量、模具温度、模具压力和保压时间4个工艺参数对复合材料拉伸性能的影响程度和显著性水平,并通过多指标综合评分法对材料的拉伸性能综合评价,分析各个工艺参数对材料拉伸性能的影响规律。结果显示,树脂含量和模具压力对复合材料的拉伸性能影响非常显著,当树脂含量为20%、模具温度为180℃、模具压力为10 MPa、模压时间为6 min时,复合材料的拉伸性能最好,此时拉伸强度为24.06 MPa,拉伸弹性模量为113.17 MPa。  相似文献   

13.
《合成纤维》2016,(3):38-42
用低温等离子体技术对碳纤维针织物进行处理,将E-44环氧树脂基体与碳纤维织物进行复合,在温度为40℃、模压压力1.5 MPa条件下,采用模压成型法,加热1 h,保温2 h后,制备出碳纤维复合材料。测试了复合材料的拉伸性能、弯曲性能及压缩性能,得出经过等离子体处理后,碳纤维复合材料的纵向拉伸强度比改性处理前提高了31.12%,横向拉伸强度提高了40.61%;纵向弯曲强度提高了26.42%,横向弯曲强度提高了23.41%;纵向抗压强度提高了40.41%,横向抗压强度提高了29.74%。等离子体处理有利于碳纤维与树脂的结合,使得制备出的碳纤维复合材料的力学性能得到提高。  相似文献   

14.
通过正交试验研究了模压温度、模压压力、保压时间、合模速度对环氧树脂/碳纤维片状模塑料模压成型制品冲击强度的影响,制品冲击强度表现出显著的各向异性。使用极差法证明各因素对冲击强度的影响大小为:保压时间t>合模速度v>模压温度T>模压压力P;得到最佳工艺参数组合为:模压温度T为130℃、模压压力P为500 kN、保压时间t为540 s、合模速度v为1 mm/s,使用该参数组进行验证实验,新制品冲击强度相较于正交试验中的最大值提高了9.75%。结合典型冲击断裂试样的微观形貌解释了影响因素作用于制品冲击强度的微观机制。  相似文献   

15.
采用低熔体粘度适用于液态成型的聚酰亚胺树脂研究了树脂传递模塑(RTM)工艺中树脂注射压力、注射流速、固化温度对碳纤维增强聚酰亚胺复合材料性能的影响,以确定最佳的成型工艺参数。结果表明,随着注射压力增大,复合材料的玻璃化转变温度下降,层间剪切强度提高,弯曲强度略有提升。随着注射流速增加,复合材料玻璃化转变温度不变,层间剪切强度和弯曲强度降低。随着固化温度升高,复合材料的玻璃化转变温度升高,但固化温度达到400℃时,层间剪切强度和弯曲强度明显降低。根据树脂工艺性,综合考虑复合材料内部质量、耐热性和力学性能,采用注射压力1.2 MPa,注射流速15 mL/min以及固化温度380℃的成型工艺较优。  相似文献   

16.
复合材料模压成型的工艺特性和影响因素分析   总被引:1,自引:0,他引:1  
简述了聚合物基复合材料模压成型工艺特性,对模压成型的设备、预浸料、工装模具、工作环境条件等提出相应要求,着重对成型工艺过程中模压成型温度、压力、保温时间等工艺参数对复合材料制品性能影响做了分析,且简要介绍了复合材料模压制品可能出现的质量问题、产生原因、预防措施等内容。  相似文献   

17.
利用差示扫描量热分析仪研究了一种快速固化环氧树脂体系的固化工艺参数,确定了以真空辅助树脂灌注工艺制备快速固化环氧树脂/碳纤维复合材料的成型方法,并与常规固化环氧树脂体系制备的碳纤维复合材料进行对比,采用傅里叶变换红外光谱仪对两种材料的树脂基体进行了分析,考察了两种复合材料的纤维含量、孔隙率及力学性能,最后通过扫描电子显微镜观察了快速固化树脂基体与碳纤维的界面结合性。结果表明,快速固化树脂在99℃下固化6 min后固化度可达96%,能够大幅缩减碳纤维复合材料的成型时间,以其制备的碳纤维复合材料拉伸强度比常规固化环氧树脂复合材料高11.20%,弯曲强度高16.92%,纵横剪切强度高7.44%,快速固化树脂与碳纤维界面结合性良好。  相似文献   

18.
采用浓硝酸对短切碳纤维(CF)进行表面氧化处理,利用模压法制备了热塑性酚醛树脂(PF)/CF复合材料,讨论了成型温度和保压时间等模压工艺参数对复合材料力学性能的影响。结果表明,无论保压时间和CF含量如何变化,成型温度为170℃时的复合材料弯曲强度和缺口冲击强度总体上均比成型温度为150和160℃时的高,且在成型温度为170℃的条件下,不同CF含量的复合材料力学性能在保压时间为15 min时出现最大值的次数最多。据此,确定了短切CF质量分数在5%~25%范围内的热塑性PF/CF复合材料模压成型最佳工艺参数为成型温度170℃、保压时间15 min。  相似文献   

19.
冯太纲  朱蕾娟  张如艳  羡瑜 《塑料》2023,(6):16-19+65
以杨木粉和聚乳酸为原料,利用烷基烯酮二聚体(AKD)对杨木粉进行表面改性处理,通过模压成型工艺制备了杨木粉/聚乳酸(PLA)复合材料。以模压温度、模压压力和保压时间为正交实验因素,将复合材料力学弯曲性能和冲击强度作为评价指标,分析了模压成型工艺对复合材料力学性能的影响;在此基础上分析了AKD含量对杨木粉/PLA复合材料力学性能和吸水性能的影响。结果表明,模压工艺对复合材料力学性能的影响程度依次为模压温度、模压压力、保压时间;当模压温度为170℃、模压压力为4 MPa、保压时间为6 min/次、5次保压、AKD含量为2%~3%时,制备的杨木粉/聚乳酸复合材料力学性能和吸水性能较好。  相似文献   

20.
为了提升家具设计中碳纤维复合材料的拉伸性能和弯曲性能。采用传统注塑(多浇口进胶)工艺和新型SVG(顺序阀浇口)工艺制备了碳纤维复合材料,考察了碳纤维质量分数和注塑成型工艺参数(熔体温度、模具温度、注射压力、注射速率)对碳纤维复合材料拉伸性能和弯曲性能的影响。结果表明,采用新型SVG工艺可以消除传统注塑成型工艺下的熔接痕缺陷和气穴缺陷;随着碳纤维质量从0增加至25%,不同熔体温度、模具温度、注射压力和注射速率下碳纤维复合材料的弯曲模量先增大后减小,在碳纤维质量分数为20%时取得较好综合性能;随着碳纤维质量分数的增加,熔接痕处试样和非熔接痕处试样的拉伸强度和弯曲模量都表现为先增大后减小,在碳纤维质量分数为20%时取得最大值,且在相同碳纤维质量分数下,非熔接痕处试样的拉伸强度和弯曲模量都明显大于熔接痕处试样。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号