首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A numerical strategy based on a finite element method is developed in order to model the stress distribution in single-lap adhesive joints. The joints were manufactured from unidirectional carbon-fibre-reinforced epoxy composites joined by an epoxy adhesive layer. Experimental parameters are used as a reference to allow for the numerical validation of the proposed analysis. Additionally, joints with different types of defects in the lap region were modelled with both two-dimensional and three-dimensional finite elements. The models include defects that vary in format (straight or circular) and position (centred or dispersed). The influenced spew fillets in the adhesive layer were also examined. Although the computational cost is higher, the results of the three-dimensional model are more compatible with the experimental results than those of the two-dimensional model. The effect of defects in the joints was adequately modelled, and the proposed methodology can be used to accurately assess the integrity of the joints since the defect has been successfully detected.  相似文献   

2.
The neutron diffraction technique has been used to investigate the longitudinal stresses in the adherend produced as a result of cure and due to the application of a tensile load in a single lap shear joint. A comparison has also been made between the stress distributions in loaded “aged” and “unaged” joints. The neutron diffraction technique is the only viable method of investigating these stresses within metal adherends and enables comparisons between predicted and measured stresses to be made. The results of these experiments cast doubt on some of the predictions from finite element modelling of adherend stress levels.  相似文献   

3.
    
Due to their many advantages, adhesively bonded joints are widely used to join components in composite structures. However, premature failure due to debonding and peeling of the joint is the major concern for this technique. Existing analytical models suffer from two major drawbacks: 1) not satisfying zero-shear stress boundary conditions at the adhesive layer’s free edges[1] and 2) failure to distinguish the peel stress along two adherend/adhesive interfaces[2]. In this study, we develop a novel three parameter elastic foundation (3PEF) model to analyze a representative adhesively bonded joint, the symmetric double-lap joint, which is believed to have relatively low peel stresses. Explicit closed-form expressions of shear and peel stresses along two adhesive/adherend interfaces are yielded. This new model overcomes the existing model’s major drawbacks by satisfying all boundary conditions and predicting various peeling stresses along two adherend/adhesive interfaces. It not only reaches excellent agreement with existing solutions and numerical results based on finite element analysis but also correctly predicts the failure mode of an experimentally tested double-lap joint. This new model therefore reveals the peel stresses’ significant role in the failure of the double-lap joint, but the classical 2PEF model cannot create it.  相似文献   

4.
    
The tensile performance of adhesively bonded CFRP scarf-lap joints was investigated experimentally and numerically. In this study, scarf angle and adherend thickness were chosen as design parameters. The lap shear strength is not directly proportional to scarf angle and adherend thickness for the brittle adhesive studied in the paper. The major failure mode includes cohesive shear failure and adherend delamination failure. The results present a stepped failure morphology along the bondline in the adhesive layer. A finite element model based on cohesive zone model was established to further investigate the stress distribution of scarf-lap joints with different lap parameters. The numerical results were compared with the experiment results, showing a good agreement, thus verifying the validity of the established numerical model.  相似文献   

5.
    
In this study, both experimental tests and numerical simulation are implemented to investigate the tensile performance of adhesively bonded CFRP single-lap joints (SLJs). The study considers 7 different overlap lengths, 5 adherend widths and 3 stacking sequences of the joints. Three-dimensional (3D) finite element (FE) models are established to simulate the tensile behavior of SLJs. The failure loads and failure modes of SLJs are investigated systematically by means of FE models and they are in good agreement with those of experiments, proving the accuracy of finite element method (FEM). It is found that increasing the adherend width can improve the load-carrying capacity of the joint better than increasing the overlap length does. Moreover, choosing 0° ply as the first ply is also beneficial for upgrading joint's strength. With respect to failure modes, cohesive failure in adhesive and delamination in adherend take dominant, while matrix cracking and fiber fracture only play a small part. With overlap length increasing or adherend width decreasing, cohesive failure takes up a smaller and smaller proportion of whole failure area, but the opposite is true for delamination. SLJs bonded with [0/45/-45/90]3S adherends are prone to cohesive failure, and [90/-45/45/0]3S adherends are easy to appear delamination. Both shear and peel stress along the bondline indicate symmetrical and non-uniform distributions with great stress gradient near the overlap ends. As the load increases, the high stress zone shifts from the end to the middle of the bondline, corresponding to the damage initiation and propagation in the adhesive layer.  相似文献   

6.
    
Fatigue is one of the most common yet complicated failures that can cause damage to mechanical structures. Structural adhesively bonded joints are not exempt from this deleterious phenomenon and have to be assessed under vibration loads. In this work, fatigue characteristics of single-lap joints (SLJ) made of steel and carbon fibre reinforced plastic (CFRP) laminates under vibration loads are primarily investigated by experiments. The aim of this work is to analyze the changes in the ultimate load of the SLJ under vibration loads. The experimental results showed that SLJ will face cohesive failure after the uniaxial tensile loading test. In addition to the increase of vibration cycles, the ultimate load and failure displacement gradually decrease. In order to model the adhesive between joint components and simulate the damage propagation, a new traction–separation law called the embedded process zone (EPZ) and a damage factor are introduced and developed within the framework of cohesive zone Modeling (CZM) techniques. Meanwhile, the stress variations in the adhesive layer of SLJ in different vibration cycles are researched using the finite element method in ABAQUS.  相似文献   

7.
    
In this experimental study, a series of tensile tests were conducted on double-lap specimens, where UV absorbance laminated glass was adhesively bonded on GFRP polyester pultruded support. Three different types of adhesives were compared, two epoxy and one polyurethane, and both un-aged and aged conditions were investigated. Three ageing conditions, simulating the external environment exposure, were investigated, i.e. temperature/moisture changes (continuous condensation), UV exposure, temperature/moisture changes and UV exposure, in order to test the effectiveness of the UV absorbance film and the durability of the bonding system. This experimental campaign aims to verify if the UV film affects the compatibility of the bonding system between GFRP and glass to be used for structural applications.The experiments showed that the PU adhesive is not the most suitable for structural applications, since it shows a great deformability of the joint with a very small stiffness, if compared with the epoxy ones. With regard to artificial aging, the experiments showed that aging has a different impact on different types of adhesives; in particular a slight effect on the mechanical performances or sensitive reduction of the load carrying capacity and of the joint elongation were observed. In general the continuous condensation produced the worst effects on the specimens, while better results were observed after the UV radiations, even though the beneficial effect of the UV rays, which improve the mechanical behavior of the joint for a further polymerization of the adhesive, are impeded by the UV absorbance film.  相似文献   

8.
    
ABSTRACT

In recent years, there has been an increasing interest in repairing offshore steel structures by using adhesively joined carbon fiber reinforced polymers (CFRP). For such procedure, surface preparation plays a vital role to maintain the integrity of the joint and to ensure proper load transfer. The primary surface preparation used by the oil and gas industry is the grit blasting due to its known quality. However, the logistic required is a major drawback limiting the use of adhesively joined repairs. Other surface preparation procedures available are unable to promote proper treatment. In this paper, an alternative surface preparation methodology employing a portable machine that uses rotation and impact to treat the steel surface was evaluated by quasi-static and fatigue tests of CFRP/steel adhesively bonded using the double-lap joints. The joints were prepared using non-corroded and severely corroded steel surfaces treated by grit blasting or rotating impact machine. The corroded plate was used to evaluate the efficiency of the rotating impact machine in removing deeply penetrating oxides. Test results showed that the performance of the machine was comparable to grit blasting even for the severely corroded surface with deep pitting. Corrosion in the metallic substrate impaired the quasi-static and fatigue properties.  相似文献   

9.
Continuing interest and more developments in recent years indicated that it would be useful to update Banea and da Silva paper entitled “Adhesively bonded joints in composite materials: an overview”. This paper presents an updated review of adhesively bonded joints in composite materials, which covers articles published from 2009 to 2016. The main parameters that affect the performance of bonded joints such as surface treatment, joint configuration, geometric and material parameters, failure mode etc. are discussed. The environmental factors such as pre-bond moisture, moisture and temperature are also discussed in detail and how they affect the durability of adhesive joints. Lots of shortcomings were resolved during the last years by developing new materials, new methods and models. However, there is still a potential to evaluate and identify the best possible combination of parameters which would give the best performance of composite bonded joints.  相似文献   

10.
In this paper, a new mode-dependent cohesive zone model for the simulation of metal to metal adhesive joints is directly determined. Three consecutive steps have been taken into account for this end. First, double cantilever beam (DCB) and end-notched flexure (ENF) specimens are utilized for the direct experimental extraction of the traction-separation laws (TSLs) for adhesive bonded joints subjected to pure mode I and mode II, respectively. Next, the results are implemented to obtain the relative cohesive zone parameters for defining the simplified Park-Paulino-Roesler cohesive zone model (S-PPR CZM). Finally, mixed-mode characteristics parameters are derived for an arbitrary mode-mixity ratio based on pure mode TSLs. The model is further implemented in ABAQUS® commercial software to be verified against the experimental results of pure mode loadings which leads to the direct extraction of TSLs. The experiments conducted on the strength of single lap joint (SLJ) and scarf joint (SJ) specimens, commonly tested for mixed-mode loading, confirm the accuracy of the developed mixed-mode S-PPR model for different mode-mixity conditions.  相似文献   

11.
    
Two-dimensional (plane-stress and plane-strain) theoretical models are presented for stress analysis of adhesively bonded single-lap composite joints subjected to either thermal or mechanical loading or a combination thereof. The joints consist of similar/dissimilar orthotropic or isotropic adherends and an isotropic adhesive interlayer. The governing differential equation of the problem is obtained using a variational method which minimizes the complementary strain energy in the bonded assembly. In this formulation, through-thickness variation of shear and peel stresses in the interlayer is considered. Both shear and normal traction-free boundary conditions are exactly satisfied. Peel and shear stresses obtained from plane-strain analytical models considering a homogeneous adhesive interlayer are in close agreement with those of the finite element predictions. A systematic parametric study is also conducted to identify an ideal set of geometric and material parameters for the optimal design of single-lap composite joints.  相似文献   

12.
The aim of this research was to develop an experimental–numerical approach to characterize the effect of salt spray environment on adhesively bonded joints and predict the degradation in joint strength. Experiments were conducted on bulk adhesive specimens and single lap joints (SLJs) under salt spray condition and the corresponding experimental results were reported. The environment degradation factor, Deg, was incorporated into a bilinear cohesive zone model (CZM) to simulate the degradation process of the joints. The degraded CZM parameters, determined from static tests on bulk adhesive, were imported into the CZM using an approximate moisture concentration gradient approach. The reduction in residual strength of SLJ under salt spray environment was successfully predicted through comparing the experimental and numerical results.  相似文献   

13.
The wedge test was used to determine the durability of adhesively bonded joints of pretreated aluminium alloy AA6060 in a hydrothermal environment. Testing of joints bonded with the one-component epoxy adhesive XD4600 showed that the durability was higher for surfaces that were grit-blasted with alumina than for alkaline etched, FPL-etched, and sulphuric acid anodised surfaces. All these surfaces performed much better than those abraded with ScotchBrite®. It was discovered that increased surface roughness improved the durability, while increased surface contamination reduced the durability of the bonded joints. On a very rough surface such as the grit-blasted, the effects of surface contamination were more than outweighed by the effects of surface roughness. Treatment of some of the pretreated surfaces with a 1% aqueous solution of γ-glycidoxypropyltrimethoxysilane significantly improved the durability, but the ranking between the pretreatments was the same as before the silane treatment. The silane treatment also reduced the initial crack lengths of the wedge test specimens. The best performance was seen by the grit-blasting plus silane treatment, which performed much better than the well-established FPL-etch.  相似文献   

14.
    
The mechanical properties of the adhesively bonded joints with ethyl-2-cyanoacrylate and ethyl-2-cyanoacrylate modified with poly(methylmethacrylate) were determined. The modifier lowers tensile stiffness, increases deformability and relaxation of the adhesive bond and improves impact resistance. A morphological structure similar to an interpenetrating network system is suggested which arises from the rapid polymerization of the solvent. The results obtained may be helpful for the design of joints with cyanoacrylate bonding.  相似文献   

15.
The present investigation focuses on modifying the strength of single-lap adhesively bonded joints under tension–torsion loading with the use of three-dimensional finite element (FE) modeling. A single-lap adhesively bonded joint is reinforced by fibers and analyzed by means of ABAQUS-6.9.1 FE code. The adherends are considered to be made of orthotropic materials, while the adhesive is neat resin or reinforced by various types of fibers. The carbon and glass unidirectional fibers are used for adhesive reinforcement. In the FE modeling, the behavior of all the members is assumed to be linear elastic. The ultimate bond strength is increased as the fiber volume fraction in the adhesive is increased. By changing the properties and the behavior of the adhesive from neat resin (isotropic) to fiber composite adhesive (orthotropic) and with various fiber volume fractions and by changing the orientation of the fibers in the adhesive region with respect to the global axes, the bond strength in tension–torsion loadings are changed. Also, the excessive adhesive layer is modeled and its effect on the joint strength is investigated.  相似文献   

16.
    
The effect of hygrothermal ageing on the creep behavior of multi-walled carbon nanotube (MWCNT) and graphene oxide nanoplatelet (GONP)-reinforced adhesive joints was investigated. The neat, MWCNT and GONP-reinforced adhesive single lap joints were manufactured and immersed in hot deionized water with three different temperatures for 24 h and then tested under creep loading. The results showed that the elastic and creep shear strain values of the neat adhesive joints increased by 14% and 25%, respectively, when the water temperature was increased from 30 to 50 °C. It was found out that 0.1 wt% MWCNTs had the maximum reinforcing effect against the creep behavior of adhesive joints pre-aged in hot water by 56% and 33% reductions in the elastic and creep strain values of the nanocomposite adhesive joints compared to the neat adhesive joints. Whereas, GONPs caused the maximum reductions of 45% and 20% in the elastic and creep strains of the nanocomposite adhesive joints compared to the neat joints. Furthermore, the Burgers rheological model was employed for simulating the creep response of adhesive joints. Semi-empirical models were proposed for the elastic and creep strains and the Burgers model parameters as functions of the water temperature and MWCNT/GONP weight percentage using the response surface methodology.  相似文献   

17.
Fracture Mechanics Tests in Adhesively Bonded Joints: A Literature Review   总被引:1,自引:0,他引:1  
Fracture mechanics characterization tests for adhesive joints are analyzed and reviewed in order to understand their advantages and disadvantages. Data reduction techniques for analytical methods are summarized to understand the improvements implemented in each test. Numerical approaches are also used complementing tests information. Both linear and non-linear methods to obtain the fracture energy release rate are presented. Pure mode I and mode II tests are described. Simple mixed-mode tests, varying only the specimen geometry, with limited mode-mixity are also presented. Performing a wider mode-mixity range requires sophisticated apparatus that are studied in detail. There is no general agreement about the test suitability for mixed-mode fracture assessment of adhesive joints. A universal test that can easily be performed and give accurate results is essential to optimize the expensive testing at the design stage.  相似文献   

18.
    
Ratcheting and low-cycle fatigue failure behaviors of the adhesively bonded hollow cylindrical butt-joints has been experimentally investigated. A series of uniaxial cyclic tension experiments were carried out under stress-controlled mode. The effects of stress amplitude, mean stress and cycle time on the uniaxial ratcheting response, fatigue damage variable evolution and fatigue life of the adhesively bonded butt-joints were analyzed. The results show that the ratcheting strain, ratcheting strain rate and fatigue damage variable all increase with the increase of stress amplitude and mean stress. The shorter cycle time results in the increase of fatigue damage variable and the degradation of the stiffness of the adhesive material. It is also found that the increase of stress amplitude and mean stress can reduce the low-cycle fatigue life. Meanwhile, the fatigue life increases with the increase of cycle time for the adhesively bonded butt-joints.  相似文献   

19.
    
This paper presents the results of research undertaken to determine the possibility of improving the fatigue properties of peel-loaded adhesive joints by dispersing multiwall carbon nanotubes (MWCNTs) into epoxy-based adhesives. The fatigue strength tests were carried out on an electromagnetic inductor with the resonance frequency of the adhesively bonded joint specimen. The tests were conducted for three types of epoxy adhesives whose properties were modified through the introduction of multiwalled carbon nanotubes, into their structure. Carbon nanotubes were synthesized by means of the Chemical Vapour Deposition (CVD) method with Fe-Co catalysts. A quantity of 1 wt.% of the dried material was dispersed into the epoxy adhesives. The results of the fatigue strength tests revealed a significant improvement of the fatigue lifetime of adhesive joints due to MWCNT introduction as filler for epoxy adhesives. In the case of the Epidian 57/PAC adhesive composition, a more than twofold increase in the fatigue lifetime was obtained (an increase of 106.8%). For the Bison Epoxy adhesive composition, the fatigue lifetime increased by 69.3%. The fatigue strength for the best result increased by about 13%.  相似文献   

20.
    
This work studies the lap-shear strength performance of polyethylene pipeline bonded with acrylic adhesive in the temperature range -10 to +20 °C. Single lap shear test samples were firstly prepared at 20 °C under various clamping pressures and curing times to determine suitable conditions under which to prepare and test further samples at temperatures of -10, -5, 0, +5 and +20 °C. It was found that a decrease in curing/testing temperature to zero degrees resulted in a steady reduction in the lap-shear strength performance of the bonded joints from a mean value of 2.72 MPa at +20 °C to 1.15 MPa at 0 °C. Below zero degrees the strength of the bonded substrates was significantly reduced; no samples bonded at -5 °C had sufficient strength to test and only one sample bonded -10 °C was tested, which had very low strength of 0.105 MPa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号