共查询到20条相似文献,搜索用时 15 毫秒
1.
Fabrication of superhydrophobic surfaces with non-aligned alkyl-modified multi-wall carbon nanotubes
Films of superhydrophobic multi-wall carbon nanotubes (MWCNTs) have been obtained by using alkyl-modified MWCNTs (MWCNT(COOC18H37)n) and a simple and effective preparation method. The films show both a high contact angle and a small sliding angle for water droplets. A particular characteristic is that on the superhydrophobic surface the alkyl-modified MWCNTs are not intentionally aligned, thus avoiding the preparation techniques using aligned carbon nanotubes to produce the same effect. 相似文献
2.
Carbon nanofibres are grown on a carbon fibre cloth using plasma enhanced chemical vapour deposition from a gas mixture of acetylene and ammonia. A cobalt colloid is used as a catalyst to achieve a good coverage of nanofibres on the surface of the carbon fibres in the cloth. The low temperature growth conditions that we used would allow growth on temperature sensitive polymers and fibres. The nanofibres grown by a tip growth mechanism have a bamboo-like structure. A significant increase of the bulk electrical conductivity of the carbon cloth was observed after the nanofibre growth indicating a good electrical contact between carbon nanofibres and carbon fibres. The as-grown composite material could be used as high surface area electrodes for electrochemical applications like fuel cells and super-capacitors. 相似文献
3.
Large amounts of well-aligned carbon nanotubes (CNTs) with open tips have been produced by pyrolysis of iron(II) phthalocyanine. The aligned CNTs have an average length about 10 μm and diameters ranging from 92 to 229 nm. Some of produced CNTs showed Y-junction structure due to the self-joint growth of two neighboring CNTs. The well-aligned CNTs indicated a bamboo-shaped multiwalled structure and fairly good crystallinity. The aligned CNTs follow tip growth mechanism. 相似文献
4.
Ting-Chi Liu 《Carbon》2006,44(10):2045-2050
The fabrication of carbon nanocapsules and carbon nanotubes (CNTs) using an acetylene flame method was investigated. Carbon nanocapsules, a graphitic structure of nanoparticles with a hollow core, were synthesized using catalyst-free acetylene flames while CNTs were formed with the presence of cobalt-based catalysts in addition to acetylene flames. When the synthesis of these materials was carried out, the results showed that a massive amount of high-purity carbon nanocapsules with a particle size in the range of 15-30 nm can be produced with the acetylene flame method. The CNTs produced were multi-walled carbon nanotubes measuring a few micrometers in length and 20-30 nm in diameter. The acetylene flame method holds great potential for the cost-effective production of CNTs as well as carbon nanocapsules. 相似文献
5.
6.
7.
Carbon nanotubes (CNTs) were synthesized by the catalytic decomposition of acetylene over 40Fe:60Al2O3, 40Ni:60Al2O3 and 20Fe:20Ni:60Al2O3 catalysts. High density CNTs of 20 nm diameter were grown over the 20Fe:20Ni:60Al2O3 catalyst, whereas low growth density CNTs of 40 and 50 nm diameter were found over 40Fe:60Al2O3 and 40Ni:60Al2O3 catalysts. Smaller catalyst particles enabled the synthesis of highly dense, long and narrow-diameter CNTs. It was found that a homogeneous dispersion of the catalyst was an essential factor in achieving high growth density. The carbon yield and the quality of CNTs increased with increasing temperature. For the 20Fe:20Ni:60Al2O3 catalyst, the carbon yield reached 121% after 90 min at 700 °C. The CNTs were grown according to the tip growth mode. Based on reports regarding hydrocarbon adsorption and decomposition over different faces of Ni and Fe, the growth mechanism of CNTs over the 20Fe:20Ni:60Al2O3 catalyst are discussed. 相似文献
8.
Imparting molecular recognition to carbon nanotubes (CNTs) by conjugating them with bio-molecules has been an area of great interest as the resulting highly functionalized CNT-bioconjugates find their applications in various fields like molecular level electronics, pharmaceuticals, drug delivery, novel materials and many others. In this work we demonstrate the synthesis of functionally engineered single walled carbon nanotubes (SWNTs)-peptide nucleic acid (PNA) conjugates especially for nanoelectronic applications. Here we exploited the exceptional structural and chemical advantages of PNA (an artificial analogue of DNA) to join SWNTs ropes. SWNT-PNA-SWNT conjugates were synthesized using carbodiimide coupling chemistry and characterized by host of techniques like scanning electron microscopy, atomic force microscopy and Fourier transform infrared spectroscopy. The results from different techniques confirm the formation of these conjugates. Theoretical analysis of molecular orbitals obtained by quantum mechanical simulations show that the highest occupied molecular orbital is located on the glutamate linker and that this interface state will align closely to the valence band of the extended SWNT facilitating charge transfer. The unique electrical and structural properties of these conjugates make them a potential candidate for application in CNT based nanodevices. 相似文献
9.
《Carbon》2002,40(7):1011-1016
By acetylene pyrolysis at 650 and 550°C, carbon nanotubes were synthesized successfully in porous alumina templates anodized in sulfuric and/or oxalic acid solution. For templates anodized in oxalic acid followed by boiling in distilled water, thermal decomposition of acetylene at 650°C in the pores results in the formation of carbon nanofibres. For templates anodized in sulfuric acid, only carbon nanotubes were formed, even if boiling in water was adopted to process it. This indicates that the modifications of the catalytic effects in acetylene pyrolysis by boiling in water are different for these two types of templates. All the carbon nanotubes and nanofibres have similar lattice structures under HRTEM examination. No carbon nanotubes or nanofibres can be formed when the chemical vapour deposition temperature decreases to 500°C. 相似文献
10.
11.
Single-walled carbon nanotubes (SWNTs) functionalized by ferrocene-grafted poly(p-phenyleneethynylene)s can gelate common organic solvents such as chloroform to form a freestanding carbon nanotube organogel that cannot be redispersed in any organic solvents, indicating the robustness of 3D nanotube network. The drying of SWNT gel on silicon wafer in the air gives a highly convoluted film that is composed of numerous bumps and grooves at multiple length scales. In addition, we report a method for the preparation of an insoluble, homogeneous, electroactive SWNT film from a fresh SWNT solution, which may find applications in nanotube coatings and thin films that require both uniformity and solvent-resistance. 相似文献
12.
13.
14.
15.
16.
Oxidation of multiwalled carbon nanotubes by nitric acid 总被引:1,自引:0,他引:1
The oxidation of MWCNTs in nitric acid was monitored using sample weight, Raman spectrum, solubility, morphology and alignment. The influence of the acid concentration, temperature and oxidation duration on the monitored parameters was assessed. A new method, based on optical microscopy is proposed for the determination of MWCNT solubility in concentrated aqueous-suspensions. The investigations revealed that the solubility is determined not only by the functional groups on the MWCNT, but also by the functionalized amorphous carbon generated during the digestion of the nanotubes. High solubility (20–40 mg/ml) is obtained only after prolonged exposure (24–48 h) in concentrated acid (60%). But in these conditions 60–90% of the MWCNTs are lost. Furthermore the MWCNTs are strongly fragmented and covered by amorphous carbon after 48 h of oxidation. It was found that the solubility correlates well with the area ratio of the G and D bands from the Raman spectrum. SEM examination of the MWCNT films showed extended alignment after 24 h of oxidation. 相似文献
17.
18.
Xiao‐Hua Zhang Zheng‐Hua Zhang Wei‐Jian Xu Fan‐Cai Chen Jian‐Ru Deng Xiao Deng 《应用聚合物科学杂志》2008,110(3):1351-1357
The toughness of cycloaliphatic epoxy resin 3,4‐epoxycyclohexylmethyl‐3′,4′‐epoxycyclohexane carboxylate (ERL‐4221) has been improved by using multiwalled carbon nanotubes (MWCNTs) treated by mixed acids. The MWCNT/ERL‐4221 composites were characterized by Raman spectroscopy and their mechanical properties were investigated. A significant increase in the tensile strength of the composite from 31.9 to 55.9 MPa was obtained by adding only 0.05 wt % of MWCNTs. And a loading of 0.5 wt % MWCNTs resulted in an optimum tensile strength and cracking energy, 62.0 MPa and 490 N cm, respectively. Investigation on the morphology of fracture surface of the composites by field emission scanning electron microscopy demonstrated the crack pinning‐front bowing and bridging mechanisms of toughening. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008 相似文献
19.
20.
We have developed a simple new method to control the diameter of carbon nanotubes (CNTs) using catalytic nanoparticle arrays fabricated by filling the pores of well-ordered porous anodic aluminum oxide (AAO) templates with a metal ion solution. Fe ion solution was used to fill the pores in which Co had been deposited electrochemically, and then the template was dried naturally on a magnet. After this process, the pores were widened in NaOH solution. Well-graphitized multi-walled CNTs were grown from almost all the pores and were very long in length and homogeneous in diameter. We were able to control the diameter of CNTs, simply, by changing the concentration of iron ion solution. For example, the average outer diameters of the CNTs are 7 ± 1.5, 13 ± 1, and 17 ± 1 nm when the concentrations of Fe ion in their mother solutions were 1.0 × 10−3, 3.0 × 10−3, and 6.0 × 10−3 M, respectively. The inner diameters of these CNTs corresponded to the calculated diameters of Fe nanoparticles by assuming that all Fe ions contained in each pore are reduced to a single nanoparticle. This means that homogeneous nanoparticles are made in each pore. Our new method could be used to fabricate homogeneous nanoparticles from most metal ion solutions. 相似文献