首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Stamping lubricant is often applied to sheet metal surface to improve the formability. In this study, the effect of stamping lubricant on the strength of adhesive-bonded 1.0-mm-thick bare aluminum (Novelis X610-T4PD) and 0.9-mm-thick bare aluminum (Novelis X626-T4P) joints was investigated. It was found that while a proper amount of lubricant (~2.21 g/m2, 1.5?μL lubricant on the 25?×?25 mm coupon) applied on the surface of the substrate had little effect on the joint strength, levels more than 2.21 g/m2 lubricant significantly decreased the joint strength. When the lubricant amount exceeds the adhesive’s compatibility with the lubricant, the negative effects of pores from lubricant evaporation during curing on the strength overrides the positive effect of increased adhesion energy. Furthermore, the presence of 2.21 g/m2 lubricant minimized the reduction of the strength of the joints pre-exposed to neutral salt spray (i.e. a concentration of 50?±?5 g/L sodium chloride solution). Careful analyses of the results indicated that corrosion of aluminum substrate surfaces of the pre-exposed joints led to the degradation in bond adhesion between the adhesive and substrates, and consequently resulted in the decrease of the joint strength. The hydrophobic lubricant protected the aluminum substrate from electrochemical reaction by damage of the bond adhesion between the adhesive and substrates leading to the lubricated joints having better corrosion resistance than the unlubricated joints.  相似文献   

2.
Durability of adhesively-bonded aluminum joints was investigated by measuring the joint strength using the single-lap shear test before and after exposure to distilled water and seawater. Fractured specimens were examined by photography and scanning electron microscopy to determine the failure modes. Addition of Al particles as much as 50 wt% did not cause any significant decrease in adhesive joint strength. Moreover, varying the Al filler content in the adhesive did not have a significant effect on adhesive behavior in either of the two environments studied. The unexposed adhesive joints failed almost completely in a cohesive (in the adhesive) failure mode. Some decrease in strength was observed in adhesive joints after exposure to both distilled water and seawater for 6 months. The decrease in adhesive joint strength was more significant for specimens immersed in distilled water than those immersed in seawater, probably due to the higher amount of moisture in the adhesive in distilled water than in seawater, as observed in a related moisture diffusion study. The joints exposed to distilled water or sea water failed in more than one mode. The interior part of the adhesive lap area failed in a cohesive mode while an adhesion failure mode was observed near the edges of the adhesive lap area, which is believed to be a result of moisture diffusion through the edges.  相似文献   

3.
The adhesion-in-peel test was used to determine peel strength and adhesion characteristics of a cured-in-place silicone elastomeric joint sealant on aluminum substrates. The sealant used was a Dow Corning Type 3145 RTV Adhesive Sealant. The results showed that the silicone sealant had poor adhesive bonding to the untreated aluminum. Plasma polymerization of hexamethyldisiloxane (HMDS) onto the aluminum was seen to move the locus of adhesive failure to being between the plasma film and the silicone. Plasma polymerization of HMDS with oxygen carrier gas produced excellent adhesion and cohesive failure in the silicone was observed.  相似文献   

4.
This paper presents a study on the effect of surface treatments on the mechanical behavior of adhesively bonded titanium alloy joints. Several different treatments were selected for the preparation of Ti-6Al-4V alloy faying surfaces, and bonded joints were fabricated using surface-treated titanium alloy substrates and a film adhesive. Tensile tests were performed on single-lap specimens to evaluate the joint strength and to assess the failure mode, i.e. cohesive failure, adhesive (interfacial) failure or a mix of both. Contact angle measurements were also carried out, and the surface free energies of titanium alloys and the thermodynamic works of adhesion for the adhesive/titanium alloy interfaces were obtained. A three-dimensional finite element analysis was used to predict the strength of the specimens exhibiting cohesive failure. In addition, an expression of the relationship between the joint strength corresponding to interfacial failure and the thermodynamic work of adhesion was introduced based on the cohesive zone model (CZM) concept. It is shown that two surface treatments, Itro treatment and Laseridge, lead to cohesive failure and a significant increase in the joint strength, and the numerically predicted strength values are fairly close to the experimental values. These surface treatments are possible replacements for the traditional surface treatment processes. For degreasing, emery paper abrasion, atmospheric plasma treatment, sulfuric acid anodizing, nano adhesion technology and high-power lasershot, the specimens fail at the adhesive/substrate interface and the joint strength increases linearly with the thermodynamic work of adhesion as expected from our CZM-based expression.  相似文献   

5.
Conventional treatment of complex fractures includes the use of plates and nails, which may compromise the affected limb's functionality. Previous studies have demonstrated promising results through chemical, mechanical, and cytotoxicity tests of a chitosan-based adhesive—proposed as a new method to bond high energy fractures—in dry environments with adequate adhesion, malleability, and biocompatibility. In this study, we focused on performing an evaluation of bio-adhesives’ mechanical properties and bone-adhesive joint using two chitosan-based formulations (with and without a cross-linking agent). The texture profile analysis determined adhesive properties, such as cohesiveness, adhesiveness, hardness, and resilience at different cure times. Bone-adhesive joint was evaluated according to the tensile bond strength test and shear bond strength test. Fracture toughness and cohesive strength were calculated through a rigid double cantilever beam test at mode I failure. Bone-adhesive joints were tested in two environments: dry and submersed in water at 37 °C for 1, 6, and 24 h (curing time), an approximation of surgery conditions. The experimental results showed an incremental of adhesiveness and hardness of the cross-linked adhesive during the first 15 min, which was determined as the usage time to spread on the bone fracture. The joint interaction between the adhesive and bone surfaces was studied; chitosan-based formulations showed an adhesive joint failure under dry conditions in most of the cases. However, this behavior changed under aqueous conditions, presenting cohesive failures. Under aqueous conditions, cross-linked bone-adhesive presented an augmented tensile bond strength up to 0.024 ± 0.0036 MPa, a shear bond strength up to 0.031 ± 0.0069 MPa, and fracture toughness of 2.38 ± 0.54 J/m2 was observed with a cure time of 24 h. Finally, the presence of the cross-linking agent in the cross-linked bio-adhesive reduced the sensitivity of the adhesive to water; a promising finding that should be explored in future studies.  相似文献   

6.
While adhesive bonding has been shown to be a beneficial technique to join multi-material automotive bodies-in-white, quantitatively assessing the effect of adherend response on the ultimate strength of adhesively bonded joints is necessary for accurate joint design.In the current study, thin adherend single lap shear testing was carried out using three sheet metals used to replace mild steel when lightweighting automotive structures: hot stamped Usibor® 1500 AS ultra-high strength steel (UHSS), aluminum (AA5182), and magnesium (ZEK 100). Six combinations of single and multi-material samples were bonded with a one-part toughed structural epoxy adhesive and experimentally tested to measure the force, displacement across the bond line, and joint rotation during loading. Finite element models of each test were analyzed using LS-DYNA to quantitatively assess the effects of the mode mixity on ultimate joint failure. The adherends were modeled with shell elements and a cohesive zone model was implemented using bulk material properties for the adhesive to allow full three-dimensional analysis of the test, while still being computationally efficient.The UHSS-UHSS joint strength (27.2 MPa; SD 0.6 MPa) was significantly higher than all other material combinations, with joint strengths between 17.9 MPa (SD 0.9 MPa) and 23.9 MPa (SD 1.4 MPa). The models predicted the test response (average R2 of 0.86) including the bending deformation of the adherends, which led to mixed mode loading of the adhesive. The critical cohesive element in the UHSS-UHSS simulation predicted 85% Mode II loading at failure while the other material combinations predicted between 41% and 53% Mode II loading at failure, explaining the higher failure strength in the UHSS-UHSS joint.This study presents a computational method to predict adhesive joint response and failure in multi-material structures, and highlights the importance of the adherend bending stiffness and on joint rotation and ultimate joint strength.  相似文献   

7.
Adhesive behavior in blends of high molecular weight poly(N-vinyl pyrrolidone (PVP) with a short-chain, liquid poly(ethylene glycol) (PEG) has been studied using a 180° peel test as a function of PVP-PEG composition and water vapor sorption. Hydrophilic pressure-sensitive adhesives are keenly needed in various fields of contemporary industry and medicine, and the PVP-PEG blends, pressure-sensitive adhesion has been established to appear within a narrow composition range, in the vicinity of 36 wt% PEG, and it is affected by the blend hydration. Both plasticizers, PEG and water, behave as tackifiers (enhancers of adhesion) in the blends with glassy PVP. However, PEP alone is shown to account for the occurrence of adhesion, and the tackifying effect of PEG is appreciably stronger than that of sorbed water. Blend hydration enhances adhesion for the systems that exhibit an apparently adhesive type of debonding from a standard substrate (at PEG content less than 36 wt%), but the same amounts of sorbed water are also capable of depressign adhesion in the PEG-overloaded blends, where a cohesive mechanism of adhesive joint failure is typical. The PVP-PEG blend with 36% PEG couples both the adhesive and cohesive mechanisms of bond rupture (i.e., the fibrillation of adhesive polymer under debonding force and predominantly adhesive locus of failure). Blend hydration effect on adhesion has been found to be reversible. The micromechanics of adhesive joint failure for PVP-PEG hydrogels involves the fibrillation of adhesive polymer, followed by fibrils stretching and fracturing as their elongation attains 1000-1500%. Peel force to rupture the adhesive bond of PVP-PEG blends increases with increasing size of the tensile deformation zone, increasing cohesive strength of the material, and increasing tensile compliance of the material, obeying the well-known Kaelble equation, derived originally for conventional rubbery pressure-sensitive adhesives. The major deformation mode upon peeling the PVP-PEG adhesive from a standard substrate is extension, and direct correlations have been established between the composition behaviour of peel strength and that of the total work of viscoelastic strain to break the PVP-PEG films under uniaxial drawing. As a result of strong interfacial interaction with the PET backing film, the PVP-PEG adhesive has a heterogeneous two-layer structure, where different layers demonstrate dissimilar adhesive characteristics.  相似文献   

8.
天然橡胶与金属双涂层胶接体系的研究   总被引:1,自引:0,他引:1  
采用机械共混和胶料成膜工艺制备了一种酚醛-橡胶型膜状胶黏剂,探讨了主要组份对胶黏剂胶接性能的影响。该膜状胶黏剂与制备的底胶构成的双涂层胶接体系满足天然橡胶与金属的热硫化粘接,扯离强度达到4.0MPa以上,180°剥离强度达到3.0kN/m以上,且试件大都为橡胶内聚力破坏。热失重(TGA)测定膜状胶黏剂固化产物的明显热失重温度达到了350℃以上,其热稳定好。该胶接体系不仅适用于天然橡胶与金属的热硫化粘接,还适用于天然橡胶与树脂基复合材料的热硫化胶接,目前该胶接体系已成功应用于天然橡胶与碳/聚酰亚胺复合材料胶接构件的制造中。  相似文献   

9.
Adhesive behavior in blends of high molecular weight poly(N-vinyl pyrrolidone (PVP) with a short-chain, liquid poly(ethylene glycol) (PEG) has been studied using a 180° peel test as a function of PVP-PEG composition and water vapor sorption. Hydrophilic pressure-sensitive adhesives are keenly needed in various fields of contemporary industry and medicine, and the PVP-PEG blends, pressure-sensitive adhesion has been established to appear within a narrow composition range, in the vicinity of 36 wt% PEG, and it is affected by the blend hydration. Both plasticizers, PEG and water, behave as tackifiers (enhancers of adhesion) in the blends with glassy PVP. However, PEP alone is shown to account for the occurrence of adhesion, and the tackifying effect of PEG is appreciably stronger than that of sorbed water. Blend hydration enhances adhesion for the systems that exhibit an apparently adhesive type of debonding from a standard substrate (at PEG content less than 36 wt%), but the same amounts of sorbed water are also capable of depressign adhesion in the PEG-overloaded blends, where a cohesive mechanism of adhesive joint failure is typical. The PVP-PEG blend with 36% PEG couples both the adhesive and cohesive mechanisms of bond rupture (i.e., the fibrillation of adhesive polymer under debonding force and predominantly adhesive locus of failure). Blend hydration effect on adhesion has been found to be reversible. The micromechanics of adhesive joint failure for PVP-PEG hydrogels involves the fibrillation of adhesive polymer, followed by fibrils stretching and fracturing as their elongation attains 1000-1500%. Peel force to rupture the adhesive bond of PVP-PEG blends increases with increasing size of the tensile deformation zone, increasing cohesive strength of the material, and increasing tensile compliance of the material, obeying the well-known Kaelble equation, derived originally for conventional rubbery pressure-sensitive adhesives. The major deformation mode upon peeling the PVP-PEG adhesive from a standard substrate is extension, and direct correlations have been established between the composition behaviour of peel strength and that of the total work of viscoelastic strain to break the PVP-PEG films under uniaxial drawing. As a result of strong interfacial interaction with the PET backing film, the PVP-PEG adhesive has a heterogeneous two-layer structure, where different layers demonstrate dissimilar adhesive characteristics.  相似文献   

10.
The aim of this study was to assess the role of silane-based field level surface treatment processes on aluminum substrate with a film-type epoxy adhesive. Two silane-based surface treatment compositions based on a dilute aqueous solution of GPS (3-glycidoxypropyltrimethoxy silane) and a hybrid sol-gel solution of TPOZ (zirconium n-propaxine) and GPS were used. The surface morphology of the treated aluminum substrates was characterized by profilometry. Contact angle measurement and X-ray photoelectron spectroscopy were carried out to analyze surface wettability, which in turn is related to the surface chemistry and cleaning efficiency for bond performances. Quantitative evaluation of the joint strength and environmental durability presented that two GPS- and TPOZ-GPS based sol-gel coatings improved the initial adhesion and environmental durability, and hence can be considered promising alternative surface treatment techniques to the existing on-aircraft anodizing process for bonded repairs. Finally, observation of the fracture surfaces revealed that a loss of interfacial integrity between the adhesive and aluminum substrate was the dominant mechanism behind the permanent loss of adhesion; the loss of interfacial integrity induced the low-strength interfacial adhesion failure mode.  相似文献   

11.
It has been determined that when a polyacrylic acid [p(AA)] macromolecule primer is used in polyurethane (PU)/p(AA)/FPL-etched aluminum joint systems, it interacts preferentially both with the hydrated Al2O3 or aluminum hydroxide adherend surface through the formation of hydrogen bonds and with the isocyanate groups in the PU adhesive to yield polymer-to-polymer chemical bonding. This chemical crosslinking between the hydrated adherend and the polymeric adhesive acts significantly to promote interfacial adhesive bonds. It appears that a near monolayer of p(AA) is enough to occupy all the available functional groups at the PU and aluminum surface sites. This arrangement plays a key role in improving the adhesion durability of the joint system upon exposure to a hot NaOH solution. It was also determined that the presence of excessive carboxylic acid groups resulting from the use of a thick p(AA) layer caused gel-formation-induced adhesion failures; namely, the locus of failure of the joint after exposure was clearly identified to be cohesive failure in the primer.  相似文献   

12.
Two major factors play an important part in improving adhesive bonding in crystalline polyphenyletherketone ( ) and amorphous polyphenylethersulfone ( ) polymer-to-metal joint systems: (1) the mechanical strength of reaction product layers formed at polymer/metal interfaces is greater than that of the polymer itself; and (2) the extent of mechanically weak Fe2O3 layers on interfacial metal surfaces, which should be minimized to avoid the undesirable cohesive failure mode through these layers. As a result, the most promising failure mechanism for good bond performance was the mixed cohesive failure modes in which separation occurred in both the polymer and adhesive layers at the polymer/metal interfaces.  相似文献   

13.
The peel strength of aluminium-aluminium joints bonded by an adhesive based on carboxylated nitrile rubber and chlorobutyl rubber was found to depend on surface topography and use of a silane primer. Anodization causes a marginal increase in bond strength while the silane primer improves the adhesive joint strength remarkably.

The peel strength was also found to be dependent on test conditions (test rate and temperature). The threshold peel strength value obtained by measurements at low peel rate and high test temperature was found to depend on the type of failure during peeling (cohesive or interfacial) which, in turn, is controlled by the presence of silica filler in the adhesive. Two different threshold values of peel strength were obtained: 60 N/m for interfacial failure (in silica-filled adhesive), 140 N/m for cohesive failure (in unfilled adhesive).  相似文献   

14.
In this study, the shear strengths of Al 7075–HSS adhesive bonded, grooved and smooth plates were investigated. The proven toughness and durability of adhesives have drawn the attention of researchers who want to take advantage of the technology to benefit the development of ballistic resistance sandwich panels. However, the strength of the panel depends on the design of surface topography. Therefore, it is essential to understand the fracture upon loading parallel to the plane of the adhesive bonded metal plates. In this experiment, toughened epoxy was used to bond dissimilar metal plates at 1 mm thickness. The shear tests were performed with a universal-testing machine to identify the maximum fracture loads. The results showed that a shear lap joint specimen with a grooved surface yields a higher strength than a smooth specimen. From the fracture behaviour of all specimens, interfacial failure with some degree of cohesive failure was observed. This indicates that the strength of the adhesive-bonded metal plate driven by a mechanical interlocking effect and mode of failure for thick bondline was the result of interfacial strength rather than adhesive bulk strength. Shear value results and fractography for 1 mm bond thickness provide insights towards steel fibre application in epoxy.  相似文献   

15.
Inha Park  J.W. Barlow  D.R. Paul   《Polymer》1990,31(12):2311-2319
The adhesion of a triblock copolymer having short styrene end-blocks and a hydrogenated mid-block to a polystyrene containing substrate was studied using both lap shear and peel test methods. The two approaches gave very similar results. Within the limits examined, the adhesive bond strength did not depend significantly on bonding temperature or time. However, the adhesive strength did increase substantially as a phenylene ether copolymer or PEC, essentially poly(phenylene oxide), was added to the substrate. This effect is believed to be the result of the exothermic mixing of PEC with polystyrene that causes an additional driving force, other than combinatorial entropy, for interpenetration of segments of the substrate and the styrenic phase of the block copolymer at the interface. Attempts to use a block copolymer having longer styrenic segments resulted in adhesive bond strengths so large that cohesive failure occurred first.  相似文献   

16.
In this work, a comparative failure analysis of aluminum (AA8011/AA8011) and glass fiber reinforced polyester (GFRP/GFRP) based similar and dissimilar joints is presented. The GFRP is prepared using pultrusion technique. Single lap joints are prepared by using Araldite R2011 epoxy as an adhesive. The lap joints are then tested under tension to estimate the average shear strength of the assembly. It is observed that the average bond strength of AA8011/AA8011 is lesser than that of the GFRP/GFRP joint. The failure of similar joints occurred by fracture within the adhesive. The dissimilar joint is failed predominantly by interface debonding. Further, a detailed three dimensional stress analysis of the joints is carried out using finite element method (FEM). The damage analysis of adhesive layer is carried out by coupling FEM with cohesive zone model (CZM). The stress, damage distributions and failure mechanisms are compared for similar joints in detail. A failure mechanism is proposed for AA8011/AA8011 type joint that favours a rapid crack growth in the adhesive after crack initiation, which is responsible for lesser bond strength. The increase in overlap length has positive effect that the peak load increases proportionally with overlap length.  相似文献   

17.
金属橡胶热硫化型底胶的研制   总被引:1,自引:0,他引:1  
王德志  曲春艳  冯浩 《粘接》2010,31(4):54-57
研制了一种酚醛一橡胶型底胶,探讨了主要组分对底胶性能的影响。实验结果表明,以n甲醛:n苯酚:n氮氧化钾=2.25:1:0.1,在65℃/3h合成的甲阶酚醛树脂具有高羟基含量,能满足底胶主体树脂要求;当该酚醛树脂100质量份、氯化橡胶60~80份、硅烷偶联剂10-15份、钛白粉30~35份时底胶具有较高强度,扯离强度40MPa以上,剥离强度3.0kN/m以上,且试件破坏形式主要为橡胶内聚破坏。该底胶作为单涂层胶粘剂可实现极性橡胶与金属的热硫化粘接,与相适应的面胶配合构成的双涂层胶接体系还可实现非极性橡胶与金属或复合材料的热硫化粘接,目前已在金属橡胶粘接领域获得了应用。  相似文献   

18.
For some adhesive joints where the main difference is the degree of contact at the interface, failure occurs not at the interface, but some distance away in the polymer itself. This cohesive mode of failure in the polymer was always found to be the case in our studies of cupric oxide to branched polyethylene interfaces, even where the joint was so weak that the peeled surface seemed clean of the polymer to the naked eye. It was observed that the strength of the joint was associated with the coarseness of the texture of the peeled surface of the polymer. With a differential scanning calorimetry technique we have shown that the coarseness of the surface texture and therefore the strength of the joint, is a direct function of the amount of polymer involved in plastic deformation. The strength criteria for the adhesive joint of this kind is thus the energy of deformation and not the maximum tensile stress that the material can withstand.  相似文献   

19.
For some adhesive joints where the main difference is the degree of contact at the interface, failure occurs not at the interface, but some distance away in the polymer itself. This cohesive mode of failure in the polymer was always found to be the case in our studies of cupric oxide to branched polyethylene interfaces, even where the joint was so weak that the peeled surface seemed clean of the polymer to the naked eye. It was observed that the strength of the joint was associated with the coarseness of the texture of the peeled surface of the polymer. With a differential scanning calorimetry technique we have shown that the coarseness of the surface texture and therefore the strength of the joint, is a direct function of the amount of polymer involved in plastic deformation. The strength criteria for the adhesive joint of this kind is thus the energy of deformation and not the maximum tensile stress that the material can withstand.  相似文献   

20.
An investigation has been made of the effect of varying glue-spread on the bond strength of holly (Ilex aquifolium) using three adhesives and three different wood sections. The glue-spreads are lower than those normally used, and it has been found with edge-grain joints that 100% cohesive wood failure can occur with a glue-spread as low as 2.7mg/cm2. Scanning electron microscopy shows that interlocking between adhesive and adherend does not occur. Factors leading to delamination and joint failure are discussed.

Lignin, without further addition, has been shown to be a useful wood adhesive. It has also been shown that it is possible to make end-grain joints without the use of an adhesive; the lignin present in the wood specimens is considered to be responsible for such joints.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号