首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Voltage-dependent, ion-selective channels such as Na+, Ca2+ and K+ channel proteins function as tetrameric assemblies of identical or similar subunits. The clustering of four subunits is thought to create an aqueous pore centred at the four-fold symmetry axis. The highly conserved, amino-terminal cytoplasmic domain (approximately 130 amino acids) immediately preceding the first putative transmembrane helix S1 is designated T1. It is known to confer specificity for tetramer formation, so the heteromeric assembly of K+-channel subunits is an important mechanism for the observed channel diversity. We have determined the crystal structure of the T1 domain of a Shaker potassium channel at 1.55 A resolution. The structure reveals that four identical subunits are arranged in a four-fold symmetry surrounding a centrally located pore about 20 A in length. Subfamily-specific assembly is provided primarily by polar interactions encoded in a conserved set of amino acids at its tetramerization interface. Most highly conserved amino acids in the T1 domain of all known potassium channels are found in the core of the protein, indicating a common structural framework for the tetramer assembly.  相似文献   

2.
Voltage-dependent gating behavior of Shaker potassium channels without N-type inactivation (ShB delta 6-46) expressed in Xenopus oocytes was studied. The voltage dependence of the steady-state open probability indicated that the activation process involves the movement of the equivalent of 12-16 electronic charges across the membrane. The sigmoidal kinetics of the activation process, which is maintained at depolarized voltages up to at least +100 mV indicate the presence of at least five sequential conformational changes before opening. The voltage dependence of the gating charge movement suggested that each elementary transition involves 3.5 electronic charges. The voltage dependence of the forward opening rate, as estimated by the single-channel first latency distribution, the final phase of the macroscopic ionic current activation, the ionic current reactivation and the ON gating current time course, showed movement of the equivalent of 0.3 to 0.5 electronic charges were associated with a large number of the activation transitions. The equivalent charge movement of 1.1 electronic charges was associated with the closing conformational change. The results were generally consistent with models involving a number of independent and identical transitions with a major exception that the first closing transition is slower than expected as indicated by tail current and OFF gating charge measurements.  相似文献   

3.
Voltage-activated Shaker-related potassium channels (kv1) consist of alpha and beta subunits. We have analysed the structure of the human KCNA1B (hKv beta 1) gene. KCNA1B is > 250 kb in size and encodes at least three Kv beta 1 splice variants. The Kv beta 1 open reading frame is divided into 14 exons. In contrast, genes coding for family members of KCNA (Kv 1 alpha) subunits are markedly smaller and have intronless open reading frames. The expression of Kv 1 alpha and Kv beta mRNA was compared in Northern blots of poly(A+) RNA isolated from various human brain tissues. The results suggest an intricate and cell-specific regulation of Kv 1 alpha and Kv beta mRNA synthesis such that distinct combinations of alpha and beta subunits would occur in different nuclei of the brain. The splice variants hKv beta 1.1 and hKv beta 1.2 were functionally characterized in coexpression studies with hKv 1.5 alpha subunits in 293 cells. It is shown that the confer rapid inactivation on hKv 1.5 channels with different potencies. This may be due to differences in their amino terminal sequences and/or inactivating domains. It is also shown that the amino terminal Kv beta 1.1 and Kv 1.4 alpha inactivating domains compete with each other, probably for the binding to the same receptor site(s) on Kv 1 alpha-subunits.  相似文献   

4.
In voltage-dependent ion channels, pore opening is initiated by electrically driven movements of charged residues, and this movement generates a gating current. To examine structural rearrangements in the Shaker K+ channel, basic residues R365 and R368 in the S4 segment were replaced with histidine, and gating currents were recorded. Changes in gating charge displacement with solvent pH reveal voltage-dependent changes in exposure of the histidine to solvent protons. This technique directly monitors accessibility changes during gating, probes the environment even in confined locations, and introduces minimal interference of gating charge motion. The results indicate that charges 365 and 368 traverse the entire electric field during gating. The remarkable implication of the successive exposure of histidine to each side of the membrane is that in a pH gradient, the voltage sensor transports protons.  相似文献   

5.
6.
The venom of the North African scorpion Androctonus mauretanicus mauretanicus possesses numerous highly active neurotoxins that specifically bind to various ion channels. One of these, P05, has been found to bind specifically to calcium-activated potassium channels and also to compete with apamin, a toxin extracted from bee venom. Besides the highly potent ones, several of these peptides (including that of P01) have been purified and been found to possess only a very weak, although significant, activity in competition with apamin. The amino acid sequence of P01 shows that it is shorter than P05 by two residues. This deletion occurs within an alpha-helix stretch (residues 5-12). This alpha-helix has been shown to be involved in the interaction of P05 with its receptor via two arginine residues. These two arginines are absent in the P01 sequence. Furthermore, a proline residue in position 7 of the P01 sequence may act as an alpha-helix breaker. We have determined the solution structure of P01 by conventional two-dimensional 1H nuclear magnetic resonance and show that 1) the proline residue does not disturb the alpha-helix running from residues 5 to 12; 2) the two arginines are topologically replaced by two acidic residues, which explains the drop in activity; 3) the residual binding activity may be due to the histidine residue in position 9; and 4) the overall secondary structure is conserved, i.e., an alpha-helix running from residues 5 to 12, two antiparallel stretches of beta-sheet (residues 15-20 and 23-27) connected by a type I' beta-turn, and three disulfide bridges connecting the alpha-helix to the beta-sheet.  相似文献   

7.
Strongly inwardly rectifying potassium channels of the Kir 2 subfamily (IRK1, IRK2, and IRK3) are involved in maintenance and modulation of cell excitability in brain and heart. Electrophysiological studies of channels expressed in heterologous systems have suggested that the pore-conducting pathway contains four subunits. However, inferences from electrophysiological studies have not been tested on native channels and do not address the possibility of nonconducting auxiliary subunits. Here, we investigate the subunit stoichiometry of endogenous inwardly rectifying potassium channel Kir 2.2 (IRK2) from rat brain. Using chemical cross-linking, immunoprecipitiation, and velocity sedimentation, we report physical evidence demonstrating the tetrameric organization of the native channel. Kir 2.2 was sequentially cross-linked to produce bands on SDS-polyacrylamide gel electrophoresis corresponding in size to monomer, dimer, trimer, and three forms of tetramer. Fully cross-linked channel was present as a single band of tetrameric size. Immunoprecipitation of biotinylated membranes revealed a single band corresponding to Kir 2.2, suggesting that the channel is composed of a single type of subunit. Hydrodynamic properties of 3-[(3-cholamidopropyl)dimethylammonio]-1-propane sulfonic acid-solubilized channel were used to calculate the molecular mass of the channel. Velocity sedimentation in H2O or D2O gave a sharp peak with a sedimentation coefficient of 17.3 S. Gel filtration yielded a Stokes radius of 5.92 nm. These data indicate a multisubunit protein with a molecular mass of 193 kDa, calculated to contain 3.98 subunits. Together, these results demonstrate that Kir 2.2 channels are formed by the homotetrameric association of Kir 2.2 subunits and do not contain tightly associated auxiliary subunits. These studies suggest that Kir 2.2 channels differ in structure from related heterooctomeric ATP-sensitive K channels and heterotetrameric G-protein-regulated inward rectifier K channels.  相似文献   

8.
The study looked at palpitations in relation to the prevalence of arrhythmia, as assessed by 24-h ambulatory electrocardiography (ECG) in a population sample. The subjects were randomly drawn from among those involved in a cardiovascular survey. Forty-three of those who answered 'Yes' and 54 of those who answered 'No' (84% of those eligible) to the following question, participated: 'Have you observed sudden changes in your heart rate or heart rhythm during the preceding year?' In both groups mean age was 49 years and 58% were men. There was no relationship between recorded arrhythmia and perceived palpitations during monitoring. The prevalence of at least one arrhythmic episode (ventricular or supraventricular arrhythmia or pauses > = 1.5 s) was significantly higher in those who had perceived palpitations during the previous year (98%) than in those who had not (74%) (P < 0.0014). Through a simple question about palpitations during the preceding year we were able to identify significantly a population with true arrhythmias. However, the question could not be used to define a population entirely without arrhythmia. The high prevalence of arrhythmia in subjects without reported palpitations indicates that it is a normal finding which alone should not demand further clinical investigations.  相似文献   

9.
The ATP-regulated potassium (KATP) channel plays an essential role in the control of insulin release from the pancreatic beta-cell. In the present study we have used the patch-clamp technique to study the direct effects of alpha-ketoisocaproate on the KATP channel in isolated patches and intact pancreatic beta-cells. In excised inside-out patches, the activity of the KATP channel was dose-dependently inhibited by alpha-ketoisocaproate, half-maximal concentration being approximately 8 mM. The blocking effect of alpha-ketoisocaproate was fully reversible. Stimulation of channel activity by the addition of ATP/ADP (ratio 1) did not counteract the inhibitory effect of alpha-ketoisocaproate. In the presence of the metabolic inhibitor sodium azide, alpha-ketoisocaproate was still able to inhibit single channel activity in excised patches and to block whole cell KATP currents in intact cells. No effect of alpha-ketoisocaproate could be obtained on either the large or the small conductance Ca2+-regulated K+ channel. Enzymatic treatment of the patches with trypsin prevented the inhibitory effect of alpha-ketoisocaproate. Based on these observations, it is unlikely that the blocking effect of alpha-ketoisocaproate is due to an unspecific effect on K+ channel pores. Leucine, the precursor of alpha-ketoisocaproate, did not affect KATP channel activity in excised patches. Our findings are compatible with the view that alpha-ketoisocaproate not only affects the beta-cell stimulus secretion coupling by generation of ATP but also by direct inhibition of the KATP channel.  相似文献   

10.
Insulin secretion from pancreatic beta cells is coupled to cell metabolism through closure of ATP-sensitive potassium (KATP) channels, which comprise Kir6.2 and sulfonylurea receptor (SUR1) subunits. Although metabolic regulation of KATP channel activity is believed to be mediated principally by the adenine nucleotides, other metabolic intermediates, including long chain acyl-CoA esters, may also be involved. We recorded macroscopic and single-channel currents from Xenopus oocytes expressing either Kir6.2/SUR1 or Kir6. 2DeltaC36 (which forms channels in the absence of SUR1). Oleoyl-CoA (1 microM) activated both wild-type Kir6.2/SUR1 and Kir6.2DeltaC36 macroscopic currents, approximately 2-fold, by increasing the number and open probability of Kir6.2/SUR1 and Kir6.2DeltaC36 channels. It was ineffective on the related Kir subunit Kir1.1a. Oleoyl-CoA also impaired channel inhibition by ATP, increasing the Ki values for both Kir6.2/SUR1 and Kir6.2DeltaC36 currents by approximately 3-fold. Our results indicate that activation of KATP channels by oleoyl-CoA results from an interaction with the Kir6.2 subunit, unlike the stimulatory effects of MgADP and diazoxide which are mediated through SUR1. The increased activity and reduced ATP sensitivity of KATP channels by oleoyl-CoA might contribute to the impaired insulin secretion observed in non-insulin-dependent diabetes mellitus.  相似文献   

11.
The voltage-dependent potassium channel, Kv1.3, is modulated by the epidermal growth factor receptor (EGFr) and the insulin receptor tyrosine kinases. When the EGFr and Kv1.3 are coexpressed in HEK 293 cells, acute treatment of the cells with EGF during a patch recording can suppress the Kv1.3 current within tens of minutes. This effect appears to be due to tyrosine phosphorylation of the channel, as it is blocked by treatment with the tyrosine kinase inhibitor erbstatin, or by mutation of the tyrosine at channel amino acid position 479 to phenylalanine. Previous work has shown that there is a large increase in the tyrosine phosphorylation of Kv1.3 when it is coexpressed with the EGFr. Pretreatment of EGFr and Kv1.3 cotransfected cells with EGF before patch recording also results in a decrease in peak Kv1.3 current. Furthermore, pretreatment of cotransfected cells with an antibody to the EGFr ligand binding domain (alpha-EGFr), which blocks receptor dimerization and tyrosine kinase activation, blocks the EGFr-mediated suppression of Kv1.3 current. Insulin treatment during patch recording also causes an inhibition of Kv1.3 current after tens of minutes, while pretreatment for 18 h produces almost total suppression of current. In addition to depressing peak Kv1.3 current, EGF treatment produces a speeding of C-type inactivation, while pretreatment with the alpha-EGFr slows C-type inactivation. In contrast, insulin does not influence C-type inactivation kinetics. Mutational analysis indicates that the EGF-induced modulation of the inactivation rate occurs by a mechanism different from that of the EGF-induced decrease in peak current. Thus, receptor tyrosine kinases differentially modulate the current magnitude and kinetics of a voltage-dependent potassium channel.  相似文献   

12.
The potassium channel from Streptomyces lividans is an integral membrane protein with sequence similarity to all known K+ channels, particularly in the pore region. X-ray analysis with data to 3.2 angstroms reveals that four identical subunits create an inverted teepee, or cone, cradling the selectivity filter of the pore in its outer end. The narrow selectivity filter is only 12 angstroms long, whereas the remainder of the pore is wider and lined with hydrophobic amino acids. A large water-filled cavity and helix dipoles are positioned so as to overcome electrostatic destabilization of an ion in the pore at the center of the bilayer. Main chain carbonyl oxygen atoms from the K+ channel signature sequence line the selectivity filter, which is held open by structural constraints to coordinate K+ ions but not smaller Na+ ions. The selectivity filter contains two K+ ions about 7.5 angstroms apart. This configuration promotes ion conduction by exploiting electrostatic repulsive forces to overcome attractive forces between K+ ions and the selectivity filter. The architecture of the pore establishes the physical principles underlying selective K+ conduction.  相似文献   

13.
14.
1. We have used patch-clamp methods to study the effects of the detergents, Cremophor, Tween 80 and Triton X100 on the K(ATP) channel in the pancreatic beta-cell from mouse. 2. All three detergents blocked K(ATP) channel activity with the following order of potency: Tween 80 (Ki< approximately 83 nM)>Triton X100 (Ki=350 nM)>Cremophor. In all cases the block was poorly reversible. 3. Single-channel studies suggested that at low doses, the detergents act as slow blockers of the K(ATP) channel. 4. Unlike the block produced by tolbutamide, that produced by detergent was not affected by intracellular Mg2+-nucleotide, diazoxide or trypsin treatment, nor did it involve an acceleration of rundown or increase in ATP sensitivity of the chanel. 5. The detergents could block the pore-forming subunit, Kir6.2deltaC26, which can be expressed independently of SUR1 (the regulatory subunit of the K(ATP) channel). These data suggest that the detergents act on Kir6.2 and not SUR1. 6. The detergents had no effect on another member of the inward rectifier family: Kir1.1a (ROMK1). 7. Voltage-dependent K-currents in the beta-cell were reversibly blocked by the detergents with a far lower potency than that found for the K(ATP) channel. 8. Like other insulin secretagogues that act by blocking the K(ATP) channel, Cremophor elevated intracellular Ca2+ in single beta-cells to levels that would be expected to elicit insulin secretion. 9. Given the role of the K(ATP) channel in many physiological processes, we conclude that plasma borne detergent may have pharmacological actions mediated through blockage of the K(ATP) channel.  相似文献   

15.
Oxidation of amino acid residues in proteins can be caused by a variety of oxidizing agents normally produced by cells. The oxidation of methionine in proteins to methionine sulfoxide is implicated in aging as well as in pathological conditions, and it is a reversible reaction mediated by a ubiquitous enzyme, peptide methionine sulfoxide reductase. The reversibility of methionine oxidation suggests that it could act as a cellular regulatory mechanism although no such in vivo activity has been demonstrated. We show here that oxidation of a methionine residue in a voltage-dependent potassium channel modulates its inactivation. When this methionine residue is oxidized to methionine sulfoxide, the inactivation is disrupted, and it is reversed by coexpression with peptide methionine sulfoxide reductase. The results suggest that oxidation and reduction of methionine could play a dynamic role in the cellular signal transduction process in a variety of systems.  相似文献   

16.
BACKGROUND: kappa-PVIIA is a 27-residue polypeptide isolated from the venom of Conus purpurascens and is the first member of a new class of conotoxins that block potassium channels. By comparison to other ion channels of eukaryotic cell membranes, voltage-sensitive potassium channels are relatively simple and methodology has been developed for mapping their interactions with small-peptide toxins. PVIIA, therefore, is a valuable new probe of potassium channel structure. This study of the solution structure and mode of channel binding of PVIIA forms the basis for mapping the interacting residues at the conotoxin-ion channel interface. RESULTS: The three-dimensional structure of PVIIA resembles the triple-stranded beta sheet/cystine-knot motif formed by a number of toxic and inhibitory peptides. Subtle structural differences, predominantly in loops 2 and 4, are observed between PVIIA and other conotoxins with similar structural frameworks, however. Electrophysiological binding data suggest that PVIIA blocks channel currents by binding in a voltage-sensitive manner to the external vestibule and occluding the pore. Comparison of the electrostatic surface of PVIIA with that of the well-characterised potassium channel blocker charybdotoxin suggests a likely binding orientation for PVIIA. CONCLUSIONS: Although the structure of PVIIA is considerably different to that of the alphaK scorpion toxins, it has a similar mechanism of channel blockade. On the basis of a comparison of the structures of PVIIA and charybdotoxin, we suggest that Lys19 of PVIIA is the residue which is responsible for physically occluding the pore of the potassium channel.  相似文献   

17.
Kv1.3, a voltage-dependent potassium channel cloned from mammalian brain and T lymphocytes, contains multiple tyrosine residues that are putative targets for tyrosine kinases. We have examined the tyrosine phosphorylation of Kv1.3, expressed transiently in human embryonic kidney (or HEK) 293 cells, by endogenous and coexpressed tyrosine kinases. Tyrosine phosphorylation is measured by a strategy of immunoprecipitation followed by. Western blot analysis, using antibodies that specifically recognize Kv1.3 and phosphotyrosine. Coexpression of the constitutively active tyrosine kinase v-src, together with Kv1.3, causes a large increase in the tyrosine phosphorylation of the channel protein. This phosphorylation of Kv1.3 can be reversed by treatment with alkaline phosphatase before Western blot analysis. Coexpression with a receptor tyrosine kinase, the human epidermal growth factor receptor, also causes an increase in tyrosine phosphorylation of Kv1.3. The effects of endogenous tyrosine kinases were examined by treating Kv1.3-transfected cells with the specific membrane-permeant tyrosine phosphatase inhibitor pervanadate. Pervanadate treatment causes a time- and concentration-dependent increase in the tyrosine phosphorylation of Kv1.3. This increased tyrosine phosphorylation of Kv1.3 is accompanied by a time-dependent decrease in Kv1.3 current, measured by patch-clamp analysis with cell-attached membrane patches. The pervanadate-induced suppression of current and much of the channel tyrosine phosphorylation are eliminated by mutation of a specific tyrosine residue, at position 449 of Kv1.3, to phenylalanine. Thus, there is a continual phosphorylation and dephosphorylation of Kv1.3 by endogenous kinases and phosphatases, and perturbation of this constitutive phosphorylation/dephosphorylation cycle can profoundly influence channel activity.  相似文献   

18.
Activation of the classical complement pathway has been widely investigated in recent years as a potential mechanism for the neuronal loss and neuritic dystrophy characteristic of Alzheimer's disease (AD) pathogenesis. We have previously shown that amyloid beta peptide (A beta) is a potent activator of complement, and recent evidence suggesting that the assembly state of A beta is crucial to the progress of the disease prompted efforts to determine whether the ability of A beta to activate the classical complement pathway is a function of the aggregation state of the peptide. In this report, we show that the fibrillar aggregation state of A beta, as determined by thioflavin T fluorometry, electron microscopy, and staining with Congo red and thioflavine S, is precisely correlated with the ability of the peptide to induce the formation of activated fragments of the complement proteins C4 and C3. These results suggest that the classical complement pathway provides a mechanism whereby complement-dependent processes may contribute to neuronal injury in the proximity of fibrillar but not diffuse A beta deposits in the AD brain.  相似文献   

19.
A new generation of structural models were developed of the outer vestibule and ion-selective portion of the voltage-gated Shaker K+ channel. Some features of these models are similar to those that we have developed previously [Durrel S. R. and Guy H. R. (1992) Biophys. J. 62, 238-250; Guy H. R. (1990) In Monovalent Cations in Biological Systems (Pasternak C. A., Ed.), pp. 31-58, CRC Press, Boca Raton, FL; Guy H. R. and Durell S. R. (1994) In Molecular Evolution of Physiological processes (Fambrough D., Ed.), pp. 197-212, The Rockefeller University Press, NY; Guy H. R. and Durell S. R. (1995) In Ion Channels and Genetic Diseases (Dawson D., Ed.), pp. 1-16, The Rockefeller University Press, NY] and other features were modified to make the models more consistent with recent experimental findings. The first part of the P segment is postulated, as always, to form a short alpha helix that spans only the outer portion of the membrane. The helix is tilted so that its C-terminal is nearer the pore than its N-terminal. The latter part of the P segment, P2, is postulated to have a relatively elongated conformation that is positioned approximately parallel to the axis of the pore. Four of the P2 segments assemble to form an ion-selective region that has two narrow regions; one formed by the Y445 side-chains at the outer entrance of the pore and one formed by the backbone of the T442 residues near the innermost part of the P segments. The S6 segment is postulated to form two alpha helices. The first S6 helix packs next to the P segments in our models. The NMR structures of two scorpion toxins, charybdotoxin and agitoxin 2, have been docked into the models of the outer vestibules. The shape of the outer vestibule has been modeled so that specific toxin-channel residue-residue interactions correspond to those that have been identified experimentally.  相似文献   

20.
K+ channels can be occupied by multiple permeant ions that appear to bind at discrete locations in the conduction pathway. Neither the molecular nature of the binding sites nor their relation to the activation or inactivation gates that control ion flow are well understood. We used the permeant ion Ba2+ as a K+ analog to probe for K+ ion binding sites and their relationship to the activation and inactivation gates. Our data are consistent with the existence of three single-file permeant-ion binding sites: one deep site, which binds Ba2+ with high affinity, and two more external sites whose occupancy influences Ba2+ movement to and from the deep site. All three sites are accessible to the external solution in channels with a closed activation gate, and the deep site lies between the activation gate and the C-type inactivation gate. We identify mutations in the P-region that disrupt two of the binding sites, as well as an energy barrier between the sites that may be part of the selectivity filter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号