首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Electrical discharge machining (EDM) is a powerful technique for machining of hard and brittle materials. In this process, because of electrical discharge, a vapour bubble is generated in the dielectric liquid between the tool and the workpiece. The growth and collapse phases of the vapour bubble have significant effect on the hydrodynamic behaviour of the dielectric liquid domain between the tool and the workpiece and cause molten material to escape from the crater. Previous numerical studies on the dynamics of an electrical discharge-generated vapour bubble have simulated the growth and collapse of the bubble until it has taken the shape of an hour-glass. This is necking phenomenon which is followed by splitting of the bubble into two parts. In this paper dynamics of an electrical discharge-generated vapour bubble between the tool and the workpiece after its splitting are investigated by using the boundary integral equation method. Development of a liquid jet on the boundary of the each of the upper and lower parts of the bubble and the impingement of the liquid jets on the nearby rigid surfaces are sought. This paper consists of two parts. In part one, the vapour bubble is initially located between the tool and the workpiece. Consequently the dynamic behaviour of the two parts of the bubble in the absence of the buoyancy forces are symmetric with respect to a horizontal axis through the mid-point between the tool and the workpiece. In part two, the elrecrical discharge-generated vapour bubble is initially located in the vicinity of the workpiece. Therefore during the necking phenomenon the upper part of the bubble is smaller than its lower part. Consequently the dynamic behaviour of the two parts of the bubble after its splitting are significantly different.  相似文献   

2.
超声振动辅助气体介质电火花加工研究   总被引:1,自引:0,他引:1  
简述了超声振动辅助气体介质电火花加工原理,并设计开发了相应的实验机床。实验结果表明:工具电极做超声振动时的材料去除率比工件做超声振动时的材料去除率要小;材料去除率随峰值电压、峰值电流、脉冲宽度、气体介质压力的增大而增大,随脉间宽度、工具电极壁厚的增大而减小。简述了超声振动辅助气体介质电火花加工材料蚀除机理。  相似文献   

3.
In this paper, the effect of the shapes of the tool and the workpiece on the dynamic behavior of an electrical discharge generated vapor bubble in the process of EDM (Electrical Discharge Machining) is investigated. The boundary integral equation method is employed for numerical simulation of the problem. Results show that in the case of the concave tool and workpiece the lifetime of the electrical discharge generated vapor bubble is longer than the case of the flat tool and workpiece. By increasing the concavity of the shapes of the tool and the workpiece, the lifetime of the bubble increases. Results also show that in the case of the convex tool and workpiece, the lifetime of the electrical discharge generated vapor bubble is shorter than the lifetime of the bubble in the case of the flat tool and workpiece. In this case also, by increasing the convexity of the shapes of the tool and the workpiece, the lifetime of the bubble decreases. Numerical results show that in the case of the concave tool and workpiece the rate of pressure drop on the surface of the workpiece is higher than the rate of pressure drop on the workpiece in the cases of the flat and convex tool and workpiece. The high rate of pressure drop on the surface of the workpiece leads to the ejection of more molten material from the crater and consequently leads to more material removal rate.  相似文献   

4.
In this study, the effect of vibrations on the electrical discharges in the micro-EDM (electrical discharge machining) process was investigated. The electrical discharge machining of micro bores was chosen to represent a typical application. Using sophisticated measuring equipment to record and analyse current and voltage waveforms as well as electrode feeding during the process, deeper insight into the discharge mechanisms was achieved. It was found, that the micro-EDM boring process can be subdivided into three major parts, the start-up process, the major boring process and the workpiece breakthrough of the tool electrode. Extensive investigations have shown a delayed start-up process on the workpiece surface for conventional micro-EDM; however, this effect can be reduced by inducing vibration on the workpiece. The cause of this reduction was analysed by single discharge analysis which also provides a means to investigate the effect of vibration frequency.  相似文献   

5.
MICRO ELECTRICAL DISCHARGE MACHINING DEPOSITION IN AIR   总被引:1,自引:0,他引:1  
A new deposition method is described using micro electrical discharge machining (EDM) to deposit tool electrode material on workpiece in air. The basic principles of micro electrical discharge deposition (EDD) are analyzed and the realized conditions are predicted. With an ordinary EDM shaping machine, brass as the electrode, high-speed steel as the workpiece, a lot of experiments are carried out on micro EDD systematically and thoroughly. The effects of major processing parameters, such as the discharge current, discharge duration, pulse interval and working medium, are obtained. As a result, a micro cylinder with 0.19 mm in diameter and 7.35 mm in height is deposited. By exchanging the polarities of the electrode and workpiece the micro cylinder can be removed selectively. So the reversible machining of deposition and removal is achieved, which breaks through the constraint of traditional EDM. Measurements show that the deposited material is compact and close to workpiece base, whose components depend on the tool electrode material.  相似文献   

6.
超声振动改善气体介质电火花加工的机理研究   总被引:1,自引:0,他引:1  
提出了超声振动-气体介质电火花复合加工技术,在简述其加工原理的基础上分析了超声振动在改善气体介质电火花加工中的作用,以及相关的理论机理。实验结果表明,附加超声振动能改善放电间隙状态,减少短路、拉弧现象,提高了材料的去除率。进行了超声振动-气体介质电火花加工单脉冲实验设计。  相似文献   

7.
Electrochemical discharge machining (ECDM) is a non-traditional machining process which is used to create micro-features on non-conductive materials. Micro holes and micro channels are the most interested features that have been fabricated by researchers. In recent years, some technical augmentations have been added to the ECDM process to achieve a more efficient machining process, but the employment of each augmentation in the most efficient way is not subjected. In this research, ultrasonic vibration is concentrated on the tool tip which directly and continuously effects on the machining zone and avoids global undesirable effects. For this purpose, modal analysis is used to design a special configuration which achieves the maximum amplitude of vibration in the tool tip. Also, an analytical model is presented for both of the electro-chemical discharge machining (ECDM) and ultrasonic assisted electro-chemical discharge machining (UAECDM) to study the effect of ultrasonic vibration on the thickness of gas film. Practical gas film thickness, machining speed, entrance overcut and tapering zone are studied for both of the ECDM and UAECDM to comprehensive understanding the effect of integration of ultrasonic vibration into the traditional ECDM process. Captures of gas film in different condition confirmed that ultrasonic vibration has reduced the thickness of gas film. Same behavior was achieved by employment of the analytical modeling. As a result, numerous small discharges were achieved which increased the material removal rate (MRR) and hole accuracy, simultaneously. Results showed that ultrasonic vibration can increase MRR up to 82%. Also, tapering zone and entrance overcut deviation as accuracy parameters improved 50% and 40%, respectively.  相似文献   

8.
介绍了电火花复合加工是在电火花加工基础上产生和发展起来的.通过对电火花加工、超声波电火花加工、超声振动辅助气中放电加工原理和特点的比较,指出了超声振动辅助气中放电加工技术应用前景,以及电火花复合加工的发展趋势.  相似文献   

9.
An investigation has been made to combine ultrasonic vibration and wire electrical discharge turning. Design of a submerged, precise, flexible, and corrosion-resistant rotary spindle is introduced. The spindle was mounted on a five-axis wire electrical discharge machine to rotate the workpiece in order to generate free-form cylindrical geometries. An auxiliary device that produces ultrasonic vibration was installed between the two wire guides. The ultrasonic system consists of an ultrasonic generator, a transducer, and a wire holder. When the wire is being driven, the transducer together with the wire holder vibrates under the resonance condition. Material removal rate (MRR) indicates efficiency and cost-effectiveness of the process. Experimental results show that wire vibration induced by ultrasonic action has a significant effect on material removal rate. This study has been conducted to evaluate the influence of four design factors: power, pulse off time, spindle rotational speed, and ultrasonic vibration over material removal rate. This has been done by means of design of experiments technique. Analysis of variance was used to determine significant effective factors and also to obtain an equation based on data regression. Experimental results indicate that ultrasonic vibration and power are the most significant influencing parameters on MRR. Rotational speed and pulse off time are the next in ranking. In order to study surface roughness, R a is measured in different machining parameters.  相似文献   

10.
This paper proposes two new methods to observe discharge phenomena without interference from the plasma in electrical discharge machining. The first method uses a bandpass filter with a bandwidth of 800–820 nm and laser illumination with a wavelength of 800–820 nm. The second method also uses a bandpass filter with a bandwidth of 800–820 nm; however, in this method, the tungsten material is used not only as the tool electrode but also as the illumination source. First, the discharge process was observed using traditional methods to investigate the influence of the plasma on the observation of the discharge process. Then, the process of removing molten material from both the tool electrode and workpiece, as well as molten pool movement, was observed using the first method proposed in this paper. The material removed from the tool electrode was scattered upward along the end profile of the tool electrode, while the material removed from the workpiece was distributed along the horizontal direction. To explain these phenomena, the flow distribution in the gap was qualitatively analyzed using a fluid simulation. Finally, the discharge process was also observed using the second method proposed in this paper. A tungsten tool electrode can emit light with a wavelength of 800–820 nm, which shines on the observed region during the discharge process. The observation results verified the phenomenon of multiple explosions of the molten pool during the discharge process. Moreover, it was found that the material removed by the explosion of the molten pool was scattered in different directions and hardly influenced by the flow distribution in the gap.  相似文献   

11.
采用超声振动辅助电火花脉冲放电表面强化技术进行了65Mn钢表面硅电极表面强化.设计了工具电极超声振动辅助电火花脉冲放电表面强化机床;研究了超声振幅和频率对强化层表面粗糙度、表面和截面形貌、Si含量及相结构的影响规律.研究表明,选择合适的超声振幅和频率,可以提高强化层的表面粗糙度,改善强化层的表面形貌,使强化层厚度分布更...  相似文献   

12.
A surface modification method by electrical discharge machining (EDM) with a green compact electrode has been studied to make thick TiC or WC layer. Titanium alloy powder or tungsten powder is supplied from the green compact electrode and adheres on a workpiece by the heat caused by discharge. To avoid the production process of the green compact electrode, a surface modification method by EDM with powder suspended in working fluid is proposed in this paper. After considering flow of working fluid in EDM process, the use of a thin electrode and a rotating disk electrode are expected to keep powder concentration high in the gap between a workpiece and an electrode and to accrete powder material on the workpiece. The accretion machining is tried under various electrical conditions. Titanium powder is suspended in working oil like kerosene. TiC layer grows a thickness of 150 μm with a hardness of 1600 Hv on carbon steel with an electrode of 1 mm in diameter. When a disk placed near a plate rotates in viscous fluid, the disk drags the fluid into the gap between the disk and the plate. Therefore, the powder concentration in the gap between a workpiece and a rotational disk electrode can be kept high. A wider area of the accretion can be obtained by using the rotational electrode with a gear shape.  相似文献   

13.
The paper describes the use of abductive networks to monitor the electrical discharge machining (EDM) process. The voltage and current across the gap between the tool and workpiece are fed into the developed networks for the recognition of various pulse types in EDM in a winner-take-all fashion. Experimental results have shown that EDM pulses can be clearly classified even with different machining conditions. Hence, a reliable technique has been developed to monitor the EDM process.  相似文献   

14.
In micro electrical discharge machining (EDM), because the material removal per single pulse discharge mainly determines the minimum machinable size of a micro EDM, decreasing the material removal per single pulse discharge is important. In this study, in order to decrease the material removal per single pulse discharge, high electric resistance materials such as single-crystal silicon are used for electrodes. Analytical results show that when the electrode resistance increases, the peak value of the discharge current decreases, whereas the pulse duration increases. In addition, the discharge energy decreases when increasing the resistance. Silicon is used as a tool electrode, and the effect of resistivity of the silicon tool electrode on the diameter of discharge craters generated on the stainless steel workpiece is examined. Experimental results reveal that with increasing silicon electrode resistivity, the diameter of discharge craters decreases. Because the diameter of discharge craters can be decreased to 0.5 μm, improved finished surfaces of Rz 0.03 μm are obtained.  相似文献   

15.
This paper deals with the effect of copper tool vibration with ultrasonic (US) frequency on the electrical discharge machining (EDM) characteristics of cemented tungsten carbide (WC-Co). It was found that ultrasonic vibration of the tool (USVT) was more effective in attaining a high material removal rate (MRR) when working under low discharge currents and low pulse times (finishing regimes). In general, the surface roughness and the tool wear ratio (TWR) were increased when ultrasonic vibration was employed. It was observed that application of ultrasonic vibration significantly reduced arcing and open circuit pulses, and the stability of the process had a remarkable improvement. This study showed that, there were optimum conditions for ultrasonic assisted machining of cemented tungsten carbide, although the conditions may vary by giving other input parameters for those which had been set constant in the present work.  相似文献   

16.
多模式超声振动等径角挤压超细晶纯铝成形机理研究   总被引:1,自引:0,他引:1  
超细晶金属材料由于具有优异的力学性能,特别适合微小金属零件的塑性成形。大塑性变形法是制备超细晶金属材料的常用方法,等径角挤压法被认为是最具有发展前景的大塑性变形方法之一。传统等径角挤压需要通过多道次的应变量累积来获得超细晶材料,制备效率较低。将超声振动与等径角挤压过程相结合可以有效减小挤压成形载荷,提高等径角挤压制备超细晶的性能和效率。现有研究主要采用工具辅助超声振动模式,提出并研发基于工件辅助超声振动模式的等径角挤压成形工艺,并对不同超声振动模式1070纯铝等径角挤压成形机理进行对比研究,研究工具超声振动和工件超声振动两种不同振动方式对晶粒道次细化能力的影响规律。结果表明,随着超声功率的增大,工具超声振动和工件超声振动的超声软化效应逐渐增强,能更大幅度降低等径角挤压成形力,并提高晶粒道次细化能力。工件超声振动比工具超声振动更有利于吸收超声能量,从而能更有效提升超细晶金属的制备效率。  相似文献   

17.
Ultrasonic-assisted machining was an effective method to improve the material removal quality especially to difficult-to-cut metal materials. The ultrasonic vibration was usually superimposed on the machining tool but seldom on the workpiece, although the ultrasonic vibration of workpiece could improve the processability of material more effectively. In this paper, a rectangle hexahedron ultrasonic sonotrode with optimized slots was developed as a platform to realize the assisted ultrasonic vibration of workpiece and the ultrasonic-assisted polishing process of austenitic stainless steel was also studied. The unbounded abrasive was selected as polishing medium, and the path compensation strategy of soft polishing tool was carried out for getting uniform polishing force. The orthogonal experiments were designed to study the optimization of ultrasonic polishing parameters and the relation between different types of ultrasonic polishing path and polishing quality. The results appear that the horizontal ultrasonic vibration of workpiece can reduce polishing force and improve polished surface roughness, which can also reinforce the proportion of plastic shear effect in the material removal process. The ultrasonic polishing path keeping consistent with workpiece vibration direction can get more uniform polishing force and better surface roughness. And the 45° oblique crossing ultrasonic path can get the maximum average polishing force reduction by 75.2 %.  相似文献   

18.
Abstract

Die-sinking electrical discharge machining (EDM) is widely used in die and mold-making industry. Finish EDM conditions are often selected to produce good quality surfaces. Attempts to enhance the finishing capabilities using ultrasonic vibration and powder-added dielectric medium have been reported in the literature. However, the changes in the gap phenomena with ultrasonic assistance and powder addition have not been analyzed. In this article, finish EDM of hardened D3 steel has been carried out based on full factorial design of experiment with three levels of setting voltage, setting current and pulse on time. The performance of ultrasonic assisted and graphite powder-added EDM are evaluated by analyzing the voltage and current pulse trains in finishing operation for the first time. Based on two new parameters, namely energy expended over a second (E) and ratio of energy due to sparks in relation to total discharge energy (PF), the results are discussed and also compared with those obtained with conventional EDM for selected conditions. Even though E of 102.9 J (PF?=?0.862) with ultrasonic vibration is higher than E of 43.0 J (PF?=?1.0) with powder mix, the molten metal is removed effectively from the gap by ultrasonic vibration which results in a relatively better surface. The micrographs of cross-section and surface of the workpieces obtained using optical and scanning electron microscopes, respectively, also reveal their relative performance.  相似文献   

19.
This article describes the experimental investigation related to creation of holes in aerospace titanium alloy workpiece using static electrode machining and electrical discharge drilling (EDD) process. Special attachment for holding and rotating the tool electrode was developed and installed on electrical discharge machining (EDM) machine by replacing the original conventional tool holder provided on die sinking EDM. The effect of input parameters such as gap current, pulse on-time, duty factor and RPM of tool electrode on output parameters for average hole circularity (Ca) and average surface roughness (Ra) have been studied. It is observed that the effect of rotating electrode machining has considerable influence on the output parameters over stationary electrode machining. The micro-graphs and photographs of few selected samples were taken by SEM and metallurgical microscope, which also commensurate with the findings of the study.  相似文献   

20.
The properties of the surface were affected by many factors such as the pulse parameters, tool electrode material, and dielectric liquid in electrical discharge machining. Austenitic, dual-phase, and ferritic steel work materials were electrical discharge machined using graphite and copper tool electrodes in hydrocarbon- based oil and water dielectric liquids. Then the surfaces were analyzed regarding sliding friction wear responses on a comparative basis. The results revealed that the surface wear responses are sensitive to the type of the tool electrode material when machining in water dielectric liquid. However, the use of hydrocarbon-based dielectric liquid substantiality suppresses the influence of tool electrode on surface wear response due to excessive carbon release from the cracked dielectric. The machined surface topographical features were also affected due to the used electrical parameters regarding crater size, globular attachments, and microcracks that led significant alterations in sliding friction response. Primarily, weakly bounded globular attachments on the machined surface were dislodged at the initial stages of the friction tests and led higher sliding distances to the steady friction conditions. Finally, the results were compared with the subsurface microstructural properties to comprehend the wear responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号