首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Quantitative calculations are reported of both band-to band Auger and radiative recombination lifetimes in thin-layered type II InxGa1−x Sb/InAs superlattices with energy gaps in the 5–17 μm range, using accurate band structure and numerical techniques. Results for an 11 μm superlattice are compared with similar calculations for bulk HgCdTe and a HgTe/CdTe superlattice having the same energy gap. The results show the n-type Auger rates to be comparable and the p-type rates to be suppressed by three orders of magnitude in some experimentally realizable structures. Thus, well fabricated III–V superlattices appear to be excellent candidates as a new class of infrarer detectors.  相似文献   

2.
The band structures, absorption coefficients, and Auger recombination rates in narrow-gap alloys HgCdTe, InTIP, InTlAs, and InTlSb in the zinc blende structure, along with those of GaAs, are calculated using a hybrid pseudopotential and tight-binding method. The composition-dependent band gaps of the thallium-based alloys are reported along with those of several other semiconductor alloys. Within 50 meV from the absorption edge, the absorption coefficient of InxTl1−xP is found to have about the same magnitude as that of HgxCd1−xTe and GaAs, while that of InxTl1−xAs and InxTl1−xSb is much smaller. In agreement with previous theories, the calculated Auger lifetimes in Hg0.78Cd0.22Te with unit or k • p overlap agree very well with experiments. Among the thallium alloys studied, the Auger lifetimes are longest in In0.33Tl0.67P, but still shorter than those in Hg0.78Cd0.22Te by an order of magnitude. In addition, realistic overlaps produce lifetimes one to two orders of magnitude larger than those observed.  相似文献   

3.
The relation between different types of band-to-band Auger processes in InGaAsP is studied. According to a nonparabolic band model that makes use ofvec{k} cdot vec{p}perturbation theory, the Auger effect involving the excited split-off band (CHSH process) is dominant. The Auger effect involving the excited light hole band (CHLH process) is far less than the effect of the CHSH process or the Auger effect involving the excited conduction band (CHCC process). A simple parabolic band model overestimates the CHCC process by about one order of magnitude, and the CHLH process by more than ten orders of magnitude.  相似文献   

4.
Photoluminescence spectra and efficiency have been measured for several strained InAsyP1−yInxGa1−xAs (0.28 < y ≤ 0.62; 0.66 ≤ x ≤ 0.83) double heterostructures grown by vapor phase epitaxy on InP substrates with graded InAsP buffer layers. Luminescence peak positions between the wavelengths of 1.99 and 2.57 (μm at a temperature of 295K are consistent with bandgap luminescence from the InxGa1−xAs active regions. Despite a high density of dislocations in the buffer layers, internal radiative recombination efficiencies of from 25 to 50% for the structures are found at 295K.  相似文献   

5.
Epitaxial transparent-substrate light-emitting diodes (ETS-LEDs) have been fabricated on optimized graded buffers of InxGa1−xP on GaP (∇x[InxGa1−x]P/GaP) that feature controlled threading dislocation densities of 3×106 cm−2. The ETSLEDs show increasing efficiency from 575 nm to 655 nm, in marked contrast to previous reports where performance drops above 600 nm, and feature the lowest spectral widths ever reported in ∇x[InxGa1−x]P/GaP. The improvement over earlier reports is attributed to large mean dislocation spacings in optimized ∇x[InxGa1−x]P/GaP, which are an order of magnitude greater than the mean carrier diffusion length. A slight performance decline remains at 655 nm, but the overall performance of this first generation of ETS-LEDs is promising.  相似文献   

6.
Two types of quantum well (QW) structures grown lattice matched on (100) GaAs have been studied. The first type of structure consists of pseudomorphic GaAsxSb1-x/GaAs (x≤0.3) SQWs which show emission wavelengths longer than those reported for pseudomorphic InyGa1−yAs/GaAs QWs. However, the attractive emission wavelength of 1.3 μm has not been achieved. To reach this goal, a novel type of bilayer QW (BQW) has been grown consisting of a stack of two adjacent pseudomorphic layers of GaAsxSb1−x and In Ga1-y As embedded between GaAs confinement layers. In this BQW, a type-II heterojunction is formed between GaAsxSb1−x and InyGa1−yAs, resulting in a spatially indirect radiative recombination of electrons and holes at emission wavelengths longer than those achieved in the GaAsxSb1−x/GaAs and IiyGa1−yAs/GaAs SQWs. The longest 300K emission wavelength observed so far was 1.332 μm.  相似文献   

7.
The Gal-xInxSb alloy system is a potentially important material for the fabrication of middle wavelength infrared detectors and emitters. In order to develop the use of this material we have investigated the liquid phase epitaxial growth of Ga1−xInxSb on GaSb via stepwise grading in the range of 400–600°C using a horizontal slider boat in a transparent furnace. Single crystal layers of Ga1−xInxSb have been obtained for the composition range 0<x<.30. As-grown undoped layers are p-type and have been characterized by lattice constant, surface morphology, bandgap, carrier concentration and carrier lifetime.  相似文献   

8.
Based on intrinsic alloy phase formation chemistry and thermodynamics, a novel and unique way of producing compositionally homogeneous multi-component (binary, ternary, quaternary) semiconductor materials is presented. A free energy minimization computer program licensed from AEA Technology Engineering Software, Inc., has been employed to study the composition of the solidifying phases from Ga-In-As-Sb melts at different temperatures and with various liquid compositions. The solid phases have been identified (theoretically and experimentally) to be either ternary compounds of Ga1−xInxAsySb1−y depending on the melt temperature and composition. By engineering the thermochemistry of preferential phase formation in the Ga-In-As-Sb melt, compositionally uniform, single phase, crack free, large polycrystalline Ga1−xInxSb and Ga1−xInxAs have been grown.  相似文献   

9.
In this paper, we report the effect of using a group-V residual source evacuation (RSE) time on the interfaces of InGaAs/lnGaAsP quantum wells (QWs) grown by gas-source molecular beam epitaxy. High-resolution x-ray rocking curve and low-temperature photoluminescence (PL) were used to characterize the material quality. By optimizing the RSE time, a PL line width at 15K as narrow as 6.6 meV is observed from a 2 nm wide single QW, which is as good as or better than what has been reported for this material system. Very sharp and distinct satellite peaks as well as Pendellosung fringes are observed in the x-ray rocking curves of InxGa1−xAs/InxGa1−xASyP1−y multiple QWs, indicating good crystalline quality, lateral uniformity, and vertical periodicity. Theoretical considerations of the PL linewidths of InxGa1−xAs/InxGa1−xASyP1−y single QWs show that for QW structures grown with the optimized RSE time, the PL linewidth is mainly due to alloy scattering, whereas the contribution from interface roughness is small, indicating a good interface control.  相似文献   

10.
The possibility of using liquid-phase epitaxy to obtain Ga1−x InxAsySb1−y solid solutions isoperiodic with GaSb near the miscibility boundary is investigated. The effect of crystallographic orientation of the substrate on the composition of the solid solutions grown in this way is examined, and the indium concentration is observed to grow from 0.215 to 0.238 in the Ga1−x InxAsySb1−y solid phase in the series of substrate orientations (100), (111)A, (111)B. A change in the composition of the solid solution leads to a shift of the long-wavelength edge of the spectral distribution of the photosensitivity. The use of a GaSb (111)B substrate made it possible, without lowering the epitaxy temperature, to increase the indium content in the solid phase to 23.8% and to create long-wavelength photodiodes with spectral photosensitivity threshold λ th=2.55 μm. The primary characteristics of such photodiodes are described, along with aspects of their fabrication. The proposed fabrication technique shows potential for building optoelectronic devices (lasers, LED’s, photodiodes) based on Ga1−x InxAsySb1−y solid solutions with red boundary as high as 2.7 μm. Fiz. Tekh. Poluprovodn. 33, 249–253 (February 1999)  相似文献   

11.
Electrical properties of Zn-doped, p-type In0.53Ga0.47As grown by the vapor phase epitaxy (VPE) technique are presented. High (p ∼ 4.0 × 1019 cm−3) p-type doping and low resistivity (ρ ∼ 2.8 × 10−3 Ωsu−cm) was obtained. These propertie's are useful in the formation of ohmic contacts in laser diodes and photodiodes fabricated from the quaternary and ternary alloy systems. A calibration curve for the non-destructive determination of carrier concentration from photoluminescence linewidths has been obtained.  相似文献   

12.
Photoluminescence (PL) based optically detected magnetic resonance (ODMR) studies as well as electroluminescence detected and electrically detected magnetic resonance (ELDMR and EDMR, respectively) measurements of InxGa1−xN quantum wells were performed. In the ODMR, two PL-enhancing resonances were observed: an electron resonance and a hole resonance. The electron resonance is consistent with expectations for the g value in bulk InxGa1−xN for x ≈ 0.4 but deviates significantly in an x≈0.3 sample. Possible reasons for this include the effects of strain and confinement. The hole resonance is qualitatively similar to observations in Mg-doped GaN, but more isotropic in the x ≈ 0.3 diode than in the x ≈ 0.4 sample. We measure relatively long radiative lifetimes (as long as ∼0.2 ms) in the ODMR which facilitate the observation of the resonances and indicate that the electron and hole are spatially separated either by potential fluctuations within the quantum well or by the trapping of the hole at an acceptor in the player of AlGaN whch serves as one of the confining barriers. In the EDMR and ELDMR experiments, the signal is primarily due to a reduction in the nonradiative recombination at resonance. While the ODMR is alwyas emission-enhancing, the ELDMR is luminescence-quenching, supporting the notion that techniques are probing different centers.  相似文献   

13.
Minority carrier recombination lifetime calculations for narrow-gap semiconductors are of direct practical interest in establishing whether a material’s recombination is extrinsically or intrinsically limited, and therefore in guiding research and development programs regarding material quality improvements. We describe efforts to obtain accurate electronic band structures of HgCdTe alloy-based materials with infrared energy gaps and employ them to evaluate Auger recombination lifetimes. We use a 14-band k · p formalism to compute and optimize electronic band structures, and use the obtained electronic energies and matrix elements directly in the numerical evaluation of Auger and radiative lifetimes.  相似文献   

14.
Based on our kinetics models for gas source molecular beam epitaxy of mixed group-V ternary materials, the group-V composition control in InyGa1−yAs1−xPx epilayers has been studied. The P or As composition in InyGa1−yAs1−xPx (lattice matched to InP or GaAs) can be obtained from a simple equation for substrate temperatures below 500°C. This has been verified by a series of experimental results.  相似文献   

15.
Thermophotovoltaic generation of electricity is attracting renewed attention due to recent advances in low bandgap (0.5–0.7 eV) III-V semiconductors. The use of these devices in a number of applications has been reviewed in a number of publications.1–4 Two potential low-bandgap diode materials are InxGa1−xAsySb1−y and InxGa1−xAs. The performance of these devices are comparable (quantum efficiency, open circuit voltage, fill factor) despite the latter’s long-term development for optoelectronics. For an 1100°C blackbody, nominally 0.55 eV devices at 25°C exhibit average photon-weighted internal quantum efficiencies of 70–80%, open circuit voltage factors of 60–65%, and fill factors of 65–70%. Equally important as the energy conversion device is the spectral control filter that effectively transmits above bandgap radiation into the diode and reflects the below bandgap radiation back to the radiator. Recent developments in spectral control technology, including InGaAs plasma filters and nonabsorbing interference filters are presented. Current tandem filters exhibit spectral utilization factors of ∼65% for an 1100°C blackbody.  相似文献   

16.
Zinc diffusion in InAsP/InGaAs heterostructures   总被引:1,自引:0,他引:1  
A systematic study of the sealed ampoule diffusion of zinc into epitaxially grown InP, In0.53Ga0.47As, In0.70Ga0.30As, In0.82Ga0.18As, and through the InAsP/InGaAs interface is presented. Diffusion depths were measured using cleave-and-stain techniques, electrochemical profiling, and secondary ion mass spectroscopy. The diffusion coefficients, , were derived. For InP, D0=4.82 × 10−2cm2/sec and Ea=1.63 eV and for In0.53Ga0.47As, D0=2.02 × 104cm2/sec and Ea=2.63 eV. Diffusion into the heteroepitaxial structures used in the fabrication of planar PIN photodiodes is dominated by the effects of the InP/InGaAs interface.  相似文献   

17.
The field dependence of drift velocity of electrons in quantum wells of selectively doped In0.5Ga0.5As/Al x In1 − x As and In0.2Ga0.8As/Al x Ga1 − x As heterostructures is calculated by the Monte Carlo method. The influence of varying the molar fraction of Al in the composition of the Al x Ga1 − x As and Al x In1 − x As barriers of the quantum well on the mobility and drift velocity of electrons in high electric fields is studied. It is shown that the electron mobility rises as the fraction x of Al in the barrier composition is decreased. The maximum mobility in the In0.5Ga0.5As/In0.8Al0.2As quantum wells exceeds the mobility in a bulk material by a factor of 3. An increase in fraction x of Al in the barrier leads to an increase in the threshold field E th of intervalley transfer (the Gunn effect). The threshold field is E th = 16 kV/cm in the In0.5Ga0.5As/Al0.5In0.5As heterostructures and E th = 10 kV/cm in the In0.2Ga0.8As/Al0.3Ga0.7As heterostructures. In the heterostructures with the lowest electron mobility, E th = 2–3 kV/cm, which is lower than E th = 4 kV/cm in bulk InGaAs.  相似文献   

18.
The criteria for clustering and spinodal decomposition in III/V pseudobinary and quaternary solid alloys are examined. A chemical driving force for clustering and phase separation exists in some ternary and most quaternary alloys. However, single crystalline alloys are shown to be stabilized by the coherency strain energy inherent in any clustering or spinodal decomposition in alloys where lattice parameter is a function of composition. Analytical expressions are derived for Ts, the temperature above which no clustering or phase separation should occur. Most III/V pseudobinary and quaternary alloys are stable at all temperatures. Numerical techniques are used to calculate spinodal isotherms. Results are presented for the systems GaxIn1−x As P1−y, A1xGa1−xAsySb1−y, and GaxIn1−x As P1−y. This work was supported by the Department of Energy, contract No. DE-AT 03-81 ER 10934.  相似文献   

19.
20.
Data are presented demonstrating the formation of native oxides from high Al composition In0.5(AlxGa1-x)0.5P (x≳ 0.9) by simple annealing in a “wet” ambient. The oxidation occurs by reaction of the high Al composition crystal with H2O vapor (in a N2 carrier gas) at elevated temperatures (≥500° C) and results in stable transparent oxides. Secondary ion mass spectrometry (SIMS) as well as scanning and transmission electron microscopy (SEM and TEM) are employed to evaluate the oxide properties, composition, and oxide-semiconductor interface. The properties of native oxides of the In0.5(AlxGa1-x)0.5P system are compared to those of the AlxGa1-xAs system. Possible reaction mechanisms and oxidation kinetics are considered. The In0.5(AlxGa1-x)0.5P native oxide is shown to be of sufficient quality to be employed in the fabrication of stripe-geometry In0.5(AlxGa1-x)0.5P visible-spectrum laser diodes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号