首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A composite material (CM) reinforced by diamond particles is fabricated from a mixture of cobalt and 10 wt % C60 powders at a pressure of 8 GPa and a temperature of 1200–1300°C, which is close to the melting temperature of the metastable Co–C eutectic. The results of X-ray diffraction, Raman spectroscopy, and electron-probe microanalysis demonstrate that the CM consists of diamond and the Co3C carbide. Diamond crystals are shown to grow as plates parallel to a {100} plane according to the mechanism of nonequilibrium normal growth during liquid-phase CM synthesis. The diamond particles have a hardness of 82 GPa at an elastic recovery of 95%. The structure of the synthesized cobalt-based CM with diamond inclusions ensures its ultrahigh wear resistance and antifriction properties.  相似文献   

2.
The composition and size of fullerites and the structures and fracture surfaces of superelastic hard carbon phase (SHP) particles made from them and reinforcing metal-matrix composite materials are studied by optical microscopy, X-ray diffraction, Raman spectroscopy, and scanning electron microscopy. An inheritance relationship is shown to exist between the optically anisotropic structure of SHP formed under pressure at temperatures above the stability threshold of fullerene molecules and the structure of the original fullerites. The fractographic features of the SHP particles made from C60 fullerenes correlate with a deformed structure of fcc fullerites, whereas the particles made from a soot extract of fullerenes have a fracture surface characteristic of amorphous materials. Reinforcing with SHP particles increases the wear resistance of cobalt by several orders of magnitude and simultaneously decreases its friction coefficient. This effect is most pronounced upon reinforcing by the particles produced from a soot extract of fullerenes.  相似文献   

3.
The elastic properties of Ni x W1?x alloys up to x = 0.1875 have been determined from first principles calculations. We have used stress–strain relationships to calculate the C ij elastic coefficients and the Voigt–Reuss–Hill approximations to determine the bulk and shear moduli of polycrystals. The W alloying increases the compression modulus while the shear modulus remains almost constant. Furthermore, the W alloying has a minor effect on the elastic anisotropy and, therefore, on its contribution to the indentation modulus.  相似文献   

4.
Raman spectroscopy, X-ray diffraction, and microhardness and modulus of elasticity measurements are used to study the influence of compacting pressure (5, 8 GPa) on the structure and properties of the phases prepared from fullerene soot extract (mixture of C60 and C70 crystallites) in a mixture with a cobalt powder. Carbon particles synthesized during high-temperature treatment at a pressure of 5 or 8 GPa and reinforcing composite samples have a universal hardness H u (hardness measured from the total (elastic and plastic) strain under loading) of 12 or 25 GPa, respectively. After heating of samples to 900°C, the values of H u of the particles decrease to 9–11 GPa at elastic recovery of the phase more than 85%. The dry friction coefficients of iron- and cobalt-based composite materials in contact with tool steel are 0.08 and 0.04, respectively.  相似文献   

5.
The results of studying the properties of copper galvanic coatings fabricated using an L1-210 v2 galvanic installation (Italy) using the bright copper plating electrolyte produced by 24 Karata (Moscow) and the addition of electroerosion copper nanopowder fabricated by the electroerosion dispersion (EED) method using copper wire scrap in distilled water are given. An original setup developed by the authors (RF Patent 2449859) was used for the EED of conductors. The friction coefficient and wear factor found when testing coatings using a Tribometer automated friction machine (CSM Instruments, Switzerland) indicate the absence of substantial distinctions in the wear resistance of the samples. Surface hardness tests of the sample were performed using a DM-8 automated microhardness tester according to the micro-Vickers method with an indenter load of 25 g by ten imprints with a free selection of the indentation point according to GOST (State Standard) 9450–76. The indenter loading time was 15 s. It is established that the microhardness of a copper coating with the addition of copper nanoparticles is 15% higher than that of steel substrate and the sample with a standard copper coating.  相似文献   

6.
The possibility of reinforcing the Al/Al2O3 laminated cermet matrix with metal rapidly solidified alloy fibers (steel, titanium, and aluminum), as well as discrete duralumin chips, is shown. The maximal reinforcing effect was attained when using titanium and steel fibers with their content of 20 and 10 vol %, respectively, due to the implementation of several energy-intensive destruction mechanisms. Reinforced composites are characterized by the following properties: ρ = 2.30–2.85 g/cm3, σbend = 180–250 MPa, K 1c = 7.5–15 MPa m1/2, and KCU = (18–35) × 103 J/m2. The Al/Al2O3–Ccoke.residue has ρ = 2.21–2.23 g/cm3 at a very low sliding friction coefficient of 0.17 (the counterbody is a ball made of steel ShKh-15 under a load of 1 N). The oxide-adhesion bond type, which makes it possible to remove spent grains from the grinding work zone and implement the self-sharpening mode, is formed for the “Al/Al2O3–fused alumina grains” composite. The material that contains kaolin fibers is ultra-light-weight ceramic insulation (0.25–0.5 g/cm3), λ = 0.07–0.2 W/(m K) in the 20–1000°C range. The material including alumina spherulites combines rather high hardness (σbend = 10–50 MPa) and porosity (42–52%) and has increased thermal stability due to the rapid elimination of the temperature gradient on structural elements having a micrometer-size cross section.  相似文献   

7.
A comparative study on abrasive wear behavior of the sol?Cgel coated B4C particulate reinforced aluminum metal matrix composite has been carried out in the present investigation. In general, composites offer superior wear resistance as compared to the alloy irrespective of applied load and B4C particles volume fraction. This is primarily due to the presence of the hard dispersoid which protects the matrix from severe contact with the counter surfaces, and thus results in less wear, lower coefficient friction and temperature rise in composite as compared to that in the alloy. The wear sliding test disclosed that the weight loss of the coated B4C reinforced composites decreases with increasing volume fraction of B4C particulates. The wear rate in all the samples increases marginally with applied load prior to reaching the critical load. It is ascribed to the increase in fracture of reinforcement, the penetration of hard asperities of the counter surface into the softer pin surface and micro cracking tendency of the subsurface. After the critical load there is a transition from smooth linear increase wear rate to sudden increase in wear rate. This is attributed to the significantly higher frictional heating and thus the localized adhesion and softening of the surface with the counter surface.  相似文献   

8.
An Fe–31Cr–20Co–3Mo (31Kh20K3M) alloy containing 0.09 wt % C, which is almost twice as much as its maximum content according to GOST 24897–81, has been studied to verify the influence of the carbon content on the magnetic hysteretic properties of hard magnetic high-chromium Fe–Cr–Co alloys. The optimal heat treatment, including thermomagnetic treatment, results in the average values of residual magnetic induction Br = 0.96 T and coercive force HcB = 63 kA/m and the maximum energy product (BH)max = 29 kJ/m3. Some heat treatment regimes give Br = 1.03 T, HcB = 72 kA/m, and (BH)max = 31 kJ/m3. In addition, for isotropic alloy samples, the following average values are obtained: Br = 0.71 T, HcB = 56 kA/m, and (BH)max = 15 kJ/m3. These magnetic hysteretic properties of the 31Kh20K3M alloy with an increased carbon content are similar to those of a powder 30Kh21K3M alloy with the minimum carbon content.  相似文献   

9.
Surfacing with composite coatings strengthened by carbide, boride, and other particles is currently of great interest in materials physics. The performance of the applied layer is primarily determined by the phase composition of the coating. To permit the selection of coatings capable of withstanding extremal operating conditions, including high loads and abrasive wear, their properties and structure must be investigated in detail. In the present work, state-of-the-art techniques in materials physics are used to study the structure, phase composition, and tribological properties of coatings applied to Hardox 450 low-carbon martensitic steel by Fe–C–Cr–Nb–W powder wire and then subjected to electron-beam treatment. The electron-beam parameters are as follows: in the first stage, energy density per pulse ES = 30 J/cm2; pulse length τ = 200 μs; and number of pulses N = 20; in the second stage, ES = 30 J/cm2; τ = 50 μs; and N = 1. These conditions are selected on the basis of calculations of the temperature field formed in the surface layer of the material by a single pulse. It is found that electron-beam treatment of an applied layer of thickness about 5 mm leads to modification of a thin surface layer (about 20 μm), consisting largely of α iron and the carbide NbC; small quantities of the carbides Fe3C and Me6C (Fe3W3C) are also present. This modified surface layer differs from the unmodified coating mainly in terms of the morphology and dimensions of the secondary-phase inclusions. In the modified surface layer, the inclusions are smaller and take the form of thin layers along the grain boundaries. In the unmodified coating, the inclusions are mainly rounded particles, chaotically distributed within the grain. After electron-beam treatment, the wear resistance of the applied layer increases by a factor greater than 70 with respect to Hardox 450 steel, while the frictional coefficient is significantly less (about a third as much).  相似文献   

10.
Superelastic TiNi shape memory alloys have been extensively used in various applications. The great interest in TiNi alloys is due to its unique shape memory and superelastic effects, along with its superior wear and dent resistance. Assessment of mechanical properties and dent resistance of superelastic TiNi is commonly performed using indentation techniques. However, the coupling of deformation and reversible martensitic transformation of TiNi under indentation conditions makes the interpretation of results challenging. An attempt is made to enhance current interpretation of indentation data. A load-depth curve is predicted that takes into consideration the reversible martensitic transformation. The predicted curve is in good agreement with experimental results. It is found in this study that the elastic modulus is a function of indentation depth. At shallow depths, the elastic modulus is high due to austenite dominance, while at high depths, the elastic modulus drops as the depth increases due to austenite to martensite transition, i.e., martensite dominance. It is also found that TiNi exhibits superior dent resistance compared to AISI 304 steel. There is two orders of magnitude improvement in dent resistance of TiNi in comparison to AISI 304 steel.  相似文献   

11.
X-ray diffraction, Raman spectroscopy, microhardness measurements, and wear tests are used to study the phase composition, structure, and properties of composite materials (CMs) produced by the compaction of a mixture of iron and fullerite (5 wt %) powders at a pressure of 5 kN/mm2 and temperatures of 800–1500°C. It has been shown that, at temperatures above 1000°C, a superhard carbon phase consisting of fullerites forms. In this case, solid-solution and precipitation hardening of the CM matrix is achieved due to carbon diffusion from fullerite particles to an iron grain. The optimal combination of the properties of reinforcing super-hard particles and the hardened matrix is achieved by pressing at 1300–1400°C.  相似文献   

12.
The dispersion of a softer phase in a metallic matrix reduces the coefficient of friction (COF), often at the expense of an increased wear rate at the tribological contact. To address this issue, unlubricated fretting wear tests were performed on spark plasma sintered Cu-Pb nanocomposites against bearing steel. The sintering temperature and the Pb content as well as the fretting parameters were judiciously selected and varied to investigate the role of microstructure (grain size, second-phase content) on the wear resistance properties of Cu-Pb nanocomposites. A combination of the lowest wear rate (~1.5 × 10?6 mm3/Nm) and a modest COF (~0.4) was achieved for Cu-15 wt pct Pb nanocomposites. The lower wear rate of Cu-Pb nanocomposites with respect to unreinforced Cu is attributed to high hardness (~2 to 3.5 GPa) of the matrix, Cu2O/Fe2O3-rich oxide layer formation at tribological interface, and exuding of softer Pb particles. The wear properties are discussed in reference to the characteristics of transfer layer on worn surface as well as subsurface damage probed using focused ion beam microscopy. Interestingly, the flash temperature has been found to have insignificant effect on the observed oxidative wear, and alternative mechanisms are proposed. Importantly, the wear resistance properties of the nanocomposites reveal a weak Hall–Petch-like relationship with grain size of nanocrystalline Cu.  相似文献   

13.
This study is concerned with the correlation of microstructure and abrasive and sliding wear resistance of (TiC,SiC)/Ti-6Al-4V surface composites fabricated by high-energy electron-beam irradiation. The mixtures of TiC, SiC, Ti + SiC, or TiC+SiC powders and CaF2 flux were deposited on a Ti-6Al-4V substrate, and then an electron beam was irradiated on these mixtures. The surface composite layers of 1.2 to 2.1 mm in thickness were homogeneously formed without defects and contained a large amount (30 to 66 vol pct) of hard precipitates such as TiC and Ti5Si3 in the martensitic matrix. This microstructural modification, including the formation of hard precipitates in the surface composite layer, improved the hardness and abrasive wear resistance. Particularly in the surface composite fabricated with TiC + SiC powders, the abrasive wear resistance was greatly enhanced to a level 25 times higher than that of the Ti alloy substrate because of the precipitation of 66 vol pct of TiC and Ti5Si3 in the hardened martensitic matrix. During the sliding wear process, hard and coarse TiC and Ti5Si3 precipitates fell off from the matrix, and their wear debris worked as abrasive particles, thereby reducing the sliding wear resistance. On the other hand, needle-shaped Ti5Si3 particles, which did not play a significant role in enhancing abrasive wear resistance, lowered the friction coefficient and, accordingly, decelerated the sliding wear, because they played more of the role of solid lubricants than as abrasive particles after they fell off from the matrix. These findings indicated that high-energy electron-beam irradiation was useful for the development of Ti-based surface composites with improved abrasive and sliding wear resistance, although the abrasive and sliding-wear data should be interpreted by different wear mechanisms.  相似文献   

14.
Regularities of the dissolution, the phase formation, and the structure formation implemented under the contact interaction conditions of titanium carbide of various compositions with Ni and Ni–(5–25%)Mo melts are investigated. It is originally established that the dissolution of carbide TiCx in nickel-based melts is incongruent. Preferentially, carbon transfers into the melt at x ≥ 0.9 and titanium at x ≤ 0.8. The limiting stage of the dissolution is diffusion of metal atoms in the liquid phase. The formation regularities of carbide Ti1–nMonCx (K-phase)—the main product of the contact interaction in the TiC/Ni–Mo system—are revealed. It is established that the K-phase is formed under the relative excess conditions of the Ni–Mo melt preferentially according to the dissolution–isolation mechanism. The composition of autonomous isolations of the K-phase depending on the experimental conditions (1450°C, 0–25 h) varies in limits from Ti0.4Mo0.6C0.7 (a = 4.27 Å) to Ti0.7Mo0.3C0.6 (a = 4.29 Å). It is determined by the molybdenum concentration in the melt at the unsteady dissolution stage and by the concentration ratio between titanium and carbon in it at the steady-state dissolution stage.  相似文献   

15.
HSC 6.1 Chemistry software (Outokumpu) and a simplex–lattice experiment design are employed in thermodynamic modeling of the equilibrium boron distribution between steel containing 0.2% C, 0.35% Si, and 0.028% Al (wt % are used throughout) and CaO–SiO2–Al2)3–8% MgO–4% B2O3 slag over a broad range of chemical composition at 1550 and 1600°C. For each temperature, mathematical models (in the form of a reduced third-order polynomial) are obtained for the equilibrium boron distribution between the slag and the molten metal as a function of the slag composition. The results of simulation are presented as graphs of the composition and equilibrium distribution of boron. The slag basicity has considerable influence on the distribution coefficient of boron. For example, increase in slag basicity from 5 to 8 at 1550°C decreases the boron distribution coefficient from 160 to 120 and hence increases the boron content in the metal from 0.021% when L B = 159 to 0.026% when L B = 121. In other words, increase in slag basicity favorably affects the reduction of boron. Within the given range of chemical composition, the positive influence of the slag basicity on the reduction of boron may be explained in terms of the phase composition of the slag and the thermodynamics of boron reduction. Increase in metal temperature impairs the reduction of boron. With increase in temperature to 1600°C, the equilibrium distribution coefficient of boron increases by 10, on average. On the diagrams, we see regions of slag composition with 53–58% CaO, 8.5–10.5% SiO2, and 20–27% Al2O3 corresponding to boron distribution coefficients of 140–170 at 1550 and 1600°C. Within those regions, when the initial slag contains 4% B2O3, we may expect boron concentrations in the metal of 0.020% when L B = 168 and 0.023% when L B = 139.  相似文献   

16.
采用5052半硬铝带分别包覆Al_2O_3、SiC、B_4C、TiC陶瓷颗粒制备的粉芯丝材进行电弧喷涂试验,制备了含陶瓷颗粒的铝基复合涂层。利用光学显微镜、XRD分析了涂层的微观组织和相结构,测试了复合涂层的显微硬度、耐磨性及耐腐蚀性。研究结果表明,制备的铝基复合涂层中含有一定数量的未熔陶瓷颗粒,涂层较为致密,无明显缺陷。含陶瓷铝基涂层的物相主要由Al和所添加的陶瓷相构成,其中在含B_4C陶瓷涂层中还存在Al_3BC、Al_4C_3和AlB_2等新相。陶瓷颗粒的加入有利于提高铝基复合涂层的显微硬度,其中B_4C的加入使涂层中基体相显微硬度提高了1.5倍,这是由于B_4C陶瓷和Al反应生成Al_3BC、Al_4C_3和AlB_2硬质相。复合涂层的耐磨性均优于纯铝涂层,摩擦磨损的形式主要为粘着磨损。动电位极化腐蚀试验表明,含SiC和TiC陶瓷涂层具有较低的腐蚀电流,耐蚀性较好,含SiC陶瓷的复合涂层出现了明显的钝化现象。  相似文献   

17.
In this study, a nickel aluminium bronze (NAB) metal matrix composite reinforced with solid lubricants i.e. graphite and molybdenum disulphide (MoS2) was prepared by friction stir processing. Friction stir processing (FSP) refined the grain structure as compared to the as-cast NAB. The micrographs of graphite reinforced matrix revealed fine globular α phase with some elongated morphology α phases, whereas MoS2 reinforced surface composite mainly exhibited fine α phase particles. FSP also resulted in the distribution of solid lubricant particles in the NAB matrix. The hardness of the composites decreased with the addition of the solid lubricants in NAB matrix. SEM–EDS analysis of the reinforced NAB matrix confirmed the presence of solid lubricants. The influence of solid lubricants on the sliding wear behavior of NAB metal matrix was investigated by using the design of experimental approach. The experimental results revealed better wear resistance of the NAB–MoS2 surface composite as compared to graphite reinforced and FSPed NAB surface. SEM–EDS analysis of worn out surfaces and wear debris were carried out for understanding the wear mechanism.  相似文献   

18.
Sintered (Pr1–xy Dy x Gd y )13–14(Fe1–z Co z )balB6–7 materials (x = 0.18–0.58, y = 0.05–0.33, z = 0.2–0.36) have been studied. The magnetic moments of gadolinium ions and those of the sublattice formed by Fe and Co ions are shown to be ordered antiferromagnetically. It is noted that an increase in the content of gadolinium, which substitutes for dysprosium, leads to an increase in residual induction B r , a decrease in coercive force H cJ , and an increase in the absolute value of the temperature coefficient of induction. The opposite effect takes place in the case of substitution of gadolinium for praseodymium in materials with a fixed dysprosium content.  相似文献   

19.
The heat-transfer coefficient h between a cylindrical cast made of AK7ch (A356) aluminum alloy and a no-bake mold based on a furan binder is determined via minimizing the error function, which reflects the difference between the experimental and calculated temperatures in the mold during pouring, solidification, and cooling. The heat-transfer coefficient is h L = 900 W/(m2 K) above the liquidus temperature (617°C) and h S = 600 W/(m2 K) below the alloy solidus temperature (556°C). The variation in the heat-transfer coefficient in ranges h L = 900–1200 W/(m2 K) (above the alloy liquidus temperature) and h S = 500–900 W/(m2 K) (below the solidus temperature) barely affects the error function, which remains at ~22°C. It is shown that it is admissible to use a simplified approach when constant h = 500 W/(m2 K) is specified, which leads to an error of 23.8°C. By the example of cylindrical casting, it is experimentally confirmed that the heat-transfer coefficient varies over the casting height according to the difference in the metallostatic pressure, which affects the casting solid skin during its solidification; this leads to a closer contact of metal and mold at the casting bottom.  相似文献   

20.
列车的制动性能与闸片材料的摩擦磨损性能关系密切,在MM-1000Ⅱ型摩擦试验机上测试了自制的Cu基粉末列车闸片材料在不同制动速度下的摩擦磨损特性。结果表明:随着制动速度的增大,摩擦表面的微凸起遭到破坏,摩擦因数随之降低,磨损量增加;在材料接触表面产生大量的摩擦热,造成基体软化,减小了基体对材料中SiO_2等硬质颗粒的夹持能力。摩擦因数和稳定系数均随制动速度增加而降低;而摩擦温度和磨损量随制动速度增加而提高,尤其是在制动速度大于8 r/s时,摩擦表面温度上升,造成基体软化,硬质颗粒脱落,加速了材料的摩擦磨损。为列车制动用Cu基粉末闸片材料摩擦磨损性能的研究提供了理论基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号