首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Changes in the specific surface area and porous structure of tantalum and niobium powders, which were prepared by magnesium-thermic reduction of Ta2O5, Mg4Ta2O9, and Mg4Nb2O9 oxide compounds and subjected to heat treatments at temperatures of 600–1500°C, have been studied. It is noted that, owing to the mesoporous structure of the magnesium-thermic powders, the decrease in the surface area during heat treatment, first of all, is related to a decrease in the amount of pores less than 10 nm in size. The heat treatment of a reacting mass is shown to allow us to correct the specific surface area of the powder without any increase in the oxygen content in it. Data on the effect of heat treatment conditions on the specific charge of capacitor anodes are reported.  相似文献   

2.
The possibility of removal of oxygen and magnesium from the products of the magnesium reduction of tantalum pentoxide under self-propagating high-temperature synthesis conditions that contain 30 wt % Mg4Ta2O9 is studied. Additional reduction of this material can decrease the magnesium content to <0.01%. The oxygen content in the fabricated tantalum powder does not exceed its amount in the surface oxide (3 × 10?3 g/m2). The specific surface area of the powder is an order of magnitude higher than that of the initial material, which can result from the formation of a tantalum powder with a specific surface area >30 m2/g during the reduction of Mg4Ta2O9.  相似文献   

3.
Fine niobium aluminide powders such as NbAl3 were produced directly from mixtures of Nb2O5 and aluminum powder by calciothermic reduction. Prior to the reduction experiment, phase equilibria between Nb-Al and Ca-Al alloys were studied. Isothermal annealing of the specimens in the Nb-Al-Ca system at 1273 K showed that NbAl3 is in equilibrium with CaAl2 and Al-rich Ca-Al liquid alloys and that Nb3Al and Nb2Al equilibrate with Ca-Al alloys containing around 9 to 18 and 18 to 36 mol pct Al, respectively. Based on these experimental phase equilibria and on reported thermodynamic data of the Al-Ca system, the activities of Al in Nb-Al alloys were evaluated. This information is necessary in determining suitable compositions and conditions for the coreduction and ultimate production of single-phase niobium aluminide. The procedure for preparation of niobium aluminide powders by calciothermic reduction of Nb2O5 consists of three steps: (1) blending of starting materials (Nb2O5 + Al); (2) high-temperature reaction with calcium; and (3) acid leaching. After the reduction of Nb2O5 with calcium and aluminum to produce niobium aluminide powders, by-products of Ca-Al alloy, CaAl2, and CaO were formed. These were removed by leaching in aqueous acid solution. The NbAl3 particles obtained were a few micrometers in size and contained about 0.15 wt pct oxygen.  相似文献   

4.
5.
The substances most suitable for use as oxygen-containing additives for the sodium-thermal fabrication of finely dispersed tantalum powder (K2Ta2O3F6, K3TaOF6, K2TaOF5, and KTaOF4) are selected based on the thermodynamic and experimental investigations of reduction reactions of tantalum compounds with sodium from the melts containing complex oxyfluorides compounds. The application of the mentioned compounds gives the opportunity to fabricate tantalum powders with a specific surface area at a level of 3–5 m2/g, which is 8- to 10-fold higher than for the powders fabricated under the same conditions when reducing K2TaF7. It is shown that fabricated tantalum powders can be needed as the initial material for the development of the capacitor powder with a charge of 70000–100000 μFV/g.  相似文献   

6.
The effect of the granulation and heat treatment of sodium-reduced tantalum powders with a specific surface area of 2.5–3.6 m2/g on the bulk density, the powder flow time, and the specific surface area of the powders and the specific capacitance of the anodes made of them is studied. It is shown that heat treatment of a granulated powder in vacuum at 1100°C or in a mixture with magnesium at 800°C makes it possible to achieve the required powder flow time.  相似文献   

7.
Several versions for the preparation of niobium powders by the reduction of niobium pentaoxide with magnesium are studied. The reaction in a powder mixture of the charge components is found to be explosive. The process occurs without explosion when the reduction is carried out in two stages and vaporous or liquid magnesium is used with periodical loading of portions of a pentaoxide powder. Niobium powders with a specific surface up to 25 m2/g are obtained in all versions. The specific charge of capacitor anodes prepared from the additionally deoxidized powders reaches 130000 μFV/g.  相似文献   

8.
Scandia doped tungsten powders were prepared by spray drying combined with two-step hydrogen reduction. The particle size of doped tungsten powder, powder morphology and doped tungsten matrix were characterized by scanning electron microscope, X-ray diffraction and laser diffraction particle size analyzer, respectively. The reduction behavior of Sc2O3 doped tungsten oxide and the effect of Sc2O3 on the property of tungsten powder were studied by the temperature programmed reduction. The experimental results showed that the precursor powders prepared by spray drying had spherical shape. The addition of Sc2O3 could decrease the reduction temperature of tungsten oxide. The scandia doped tungsten powder had sub-micrometer size in the range of 0.1 to1 μm and scandium distributed evenly in the powder. By using this kind powder, sub-microstructure cathode matrices with semispherical grains and homogenous distribution of scandium were obtained.  相似文献   

9.
The paper examines the properties of the nanocrystalline powder 95 mole% ZrO2-2 mole% CeO2-3 mole% Y2O3, synthesized using a combination of two methods: coprecipitation and hydrothermal decomposition. It is established that coprecipitation produces an x-ray amorphous gel consisting of hard agglomerates from 5 to 10 μm and having a specific surface area of 120 m2/g and a bottle density of 2.94 g/cm3. Hydrothermal synthesis results in a low-temperature metastable cubic solid solution based on ZrO2 (F-ZrO2). Its specific surface area is 101.6 m2/g and bottle density is 4.65 g/cm3. Soft agglomerates (0.5–10 μm) consist of primary particles with sizes to 10 nm. The change in hydrothermal suspension processing steps results in soft agglomerates with branched internal porosity. This method allows synthesizing powders of needed compositions in the ZrO2-CeO2-Y2O3 system. __________ Translated from Poroshkovaya Metallurgiya, Vol. 46, No. 1–2(453), pp. 23–30, 2007.  相似文献   

10.
The effect of the heat-treatment conditions on the bulk density, flowability, and electrical properties of the sodium-reduced niobium powders prepared using two versions of reduction is studied. These versions include (i) the supply of liquid sodium on the surface of a melt containing potassium heptafluoniobate K2NbF7 (liquid-phase reduction) and (ii) the supply of solid K2NbF7 on the surface of liquid sodium (heterophase reduction). Heat treatment of a bulk niobium powder in the temperature range 900–1300°C is shown to result in a substantial loss in the specific surface area without increasing the bulk density. To produce a powder with a specific capacitance higher than 90 mCV/g, a bulk density of 1.2 g/cm3, and a good flowability, the initial pelleted heterophase-reduction powder should be sintered at 1200°C.  相似文献   

11.
The structure of niobium nanopowders (particle size 0.03–0.07 μm) oxidized in air is studied by X-ray diffraction. The nanopowder particles have a significant fraction of an amorphous phase. The amorphous component is likely to block the well-known mechanism of niobium oxidation Nb → Nbs.s → Nb6O → NbO → NbOx, which was proposed on the basis of the results of studying the oxidation of niobium powders at high temperatures. Here, Nbs.s is the solid solution of oxygen in niobium and NbOx are the higher niobium oxides NbO2 and Nb2O5. The amorphization of the surface of niobium nanopowders oxidized at 20°C can be one of the main causes of a rather high electrical resistivity (ρ ≈ 108 Θ cm) of the samples compacted from these powders.  相似文献   

12.
Niobium and tantalum surfaces easily absorb oxygen. With decreasing particle size the content of oxygen increases. The role of this surface oxygen and oxygen in the sintering atmospheres on the first-stage sintering is not well established. Therefore the sintering behavior of high-purity niobium powders was studied by annealing cylindrical powder compacts (particle size <63 μm) in the temperature range from 1000°C to 1600°C in ultra-high vacuum and under low oxygen partial pressures, as well as in inert gas atrnospheres with low oxygen contents. The specific surface of the samples was determined by metallographic methods, adsorption, and capacitance measurements. Low oxygen partial pressures (10-3 Pa) lead to a slight enhancement of the surface diffusion which is controlling first-stage sintering. High heating rates (0T > 3000 min-1) to temperatures above the melting point of Nb2O5 (Tm = 1495 °C) enhances the neck growth due to the formation of a liquid oxide phase on the surface of the powder particles. This paper is based on a presentation delivered at the symposium “Activated and Liquid Phase Sintering of Refractory Metals and Their Compounds” held at the annual meeting of the AIME in Atlanta, Georgia on March 9, 1983, under the sponsorship of the TMS Refractory Metals Committee of AIME  相似文献   

13.
This paper examines the phase transformation and microstructure of Zn2Ti3O8 nanocrystallite powders prepared using the hydrothermal process that includes TiCl4 and Zn(NO3)2·6H2O as the initial materials. Differential thermal analysis, X-ray diffraction, transmission electron microscopy (TEM), selected area electron diffraction, nanobeam electron diffraction, and high resolution TEM were utilized to characterize the transition behavior of zinc titanate precursor powders after calcination. Nanocrystalline Zn2Ti3O8 powders with a size range of about 5.0 to 8.0 nm were obtained when the precursor powders were calcined at 773 K (500 °C) for 1 hour. When the zinc titanate precursor powders were calcined at 1073 K (800 °C) for 1 hour, the cubic crystal of Zn2Ti3O8 with a o = 0.8399 ± 0.0003 nm still remained the predominant crystalline phase and the crystallite size increased to 20.0 nm. In addition, ZnTiO3 phase first appeared because of the 13.8 pct of Zn2Ti3O8 decomposition when the zinc titanate precursor powders were calcined at 1073 K (800 °C) for 1 hour. When the zinc titanate precursor powders were calcined at 1073 K (800 °C) for 9 hours, the Zn2Ti3O8 crystallites grew continuously to 80.0 nm and enhanced the crystallinity. When the precursor powders were calcined at 1273 K (1000 °C) for 1 hour, Zn2TiO4 crystallites with a o = 0.8461 ± 0.0002 nm were the predominant crystalline phase.  相似文献   

14.
Effect of mechanical activation of NiAl powders produced by calcium hydride reduction in an attritor and a ball mill on the specific surface, the oxygen concentration, the strain hardening, and the coherent domain size (CDS) of the powders is studied. It is found that the powder specific surface milled in the attritor for 10–15 h is larger by a factor of 1.7–1.8 and the oxygen concentration in a powder is lower by a factor of 1.35 as compared to the its milling in the ball mill for 150 h. The powders milled in the attritor for 15 h have the level of microstresses higher by a factor of ~2.4 and the CDS smaller by a factor of 2 as compared to the powder treated in the ball mill for 150 h. When milling a powder in the attritor, the milling time decreases by a factor of 10 and the degree of powder refinement increases, which improves the technological characteristics of the powders. As a result of the combination (in one operation) of mechanical activation of an NiAl intermetallic matrix powder in the attritor and the introduction of dispersed particles of a refractory oxide Y2O3 powder, the produced composite alloy has a density close to the theoretical one and has no aggregates of dispersed oxide particles at grain boundary junctions. Submicro- and nanosized oxide particles are homogenously distributed in the intermetallic matrix volume, which is characterized by a homogeneous distribution of nickel and aluminum.  相似文献   

15.
《粉末冶金学》2013,56(4):305-309
Abstract

An investigation has been made to prepare homogeneous powders of CuWO4 and WO3 from ammonium paratungstate and copper nitrate to prepare nanosized W–Cu powder. Hence, a mixture of ammonium paratungstate and copper nitrate with predetermined weight proportion was made in distilled water; while the content of the beaker was being stirred at a certain speed to reach the desired composition of W–20 wt-%Cu. Mixture was heated to 80–100°C for 6 h. Also, pH range was adjusted at about 3–4. The mixture was then evaporated and dried in the air. To reach W–Cu composite powder, the precursor powders burned out at 520°C for 2 h in the air to form W–Cu oxide powder and then were ball milled and reduced in H2 atmosphere to convert it into W–Cu composite powder. The resulting powders were evaluated using scanning electron microscopy, X-ray diffraction, thermogravimetric analysis and differential thermal analysis techniques. The results showed that homogeneous powders of W–Cu with particle size of ~100 nm and a nearly spherical shape could be obtained by this process.  相似文献   

16.
The presence of sparingly soluble zinc and magnesium ferrites in roasted zinc concentrates can cause problems during leaching. This study aimed at the determination of the dissolution kinetics of zinc ferrite-magnesium ferrite solid solutions. The investigations have been performed for the (Zn1?xMgx)Fe2O4 powder specimens (x = 0, 0.25, 0.50, 0.75 and 1) in solutions of 100–200 g/l H2SO4 at 323–363 K. Dissolution of all specimens has been found to be chemically controlled and homothetic, being described by the “unreacted-core shrinking” model. The dissolution rate constant of zinc ferrite was about seven times higher than that of magnesium ferrite (e.g. 3.83·10?6 against 0.53·10?6 mol/m2s in 100 g/l H2SO4 at 363 K). The relation between rate constant and the x value was not linear. The activation energy was not dependent on the x value and amounted to ca. 75 kJ/mol. The results have important relevance to the “magnesium problem” often experienced in roach-leach processes in hydrometallurgy.  相似文献   

17.
《粉末冶金学》2013,56(3):260-264
Abstract

Mechanical milling and hydrogen reduction of pure oxide mixture and magnetic characterisation of Co–Fe–Cu ternary alloy nanopowders were investigated. A powder mixture of Co3O4, CuO and Fe2O3 with Co50Fe40Cu10 stoichiometry was first milled by a high energy planetary ball mill and then reduced in a hydrogen reduction system.

The optimum condition of the reduction under the hydrogen atmosphere was 650°C and 1 h. The X-ray diffraction patterns exhibit that the powder has ordered bcc structure with b2–bcc space group and 2·87 Å lattice parameter. Mean crystallite sizes calculated from X-ray diffraction results and mean particle size observed from electron microscopes were over 75 nm. Magnetic evaluation of ternary alloy nanopowders showed a saturation magnetisation value about 143 Am2 kg–1 and a low coercivity value of 0·93 Am–1.  相似文献   

18.
Spray-drying process was selected to agglomerate ball milled NiCoCrAlY–Al2O3 composite powders. The effect of the starting alloy powder size on the morphology of composite powder was studied. The parameters of milling were optimised by orthogonal experiment to improve the powder’s flowability and apparent density. Then the optimised powder was sprayed by air plasma spray to prepare NiCoCrAlY–Al2O3 composite coating. The results showed that the size distribution of starting particles decided the deformation of alloy particles and the characteristics of agglomerated powders eventually. With the decreasing size range of the starting alloy particles, the sphericity of agglomerated powders increased. The optimised milling parameters were as follows: solid content, 60?wt-%; BPR, 4:1; the rotating speed, 350?rev?min?1; and milling time, 5?h. And the contribution of solid content was the largest. The Al2O3 splats showed good adhesion with alloy matrix when the composite powder melted in good condition.  相似文献   

19.
The characteristics of the tantalum powders produced by sodium thermal reduction from salt melts based on K2TaF7 and NaCl with various amounts of added oxycompounds K3TaOF6 and K2Ta2O3F6 are studied. At a molar ratio of oxygen to tantalum of 1.25 in the initial melt, capacitor tantalum powders with a specific surface area more than 3 m2/g are produced. The specific capacitance of the anodes made from these powders reaches 58 mC/g.  相似文献   

20.
The Zn_(1-x)Al_2 O_4:xEu~(2+) phosphor powders were synthesized by the solid-state reaction method.The synthesis temperature for ZnAl_2 O_4 was optimized,whereas the phase structure,TEM images,photoluminescence(PL) properties,the concentration quenching mechanism,the fluorescence decay curves,as well as the CIE chromaticity coordinates of the samples were investigated in details.Under the excitation at 379 nm,the phosphor exhibits an asymmetric broad-band green emission with a peak at 532 nm,which is ascribed to the 5 d-4 f transition of Eu2+.When the doping concentration of Eu2+ ions is 0.01,the luminescence intensity of the sample reaches the maximum value.It is further proved that the exchange interaction results in the concentration quenching of Eu2+ in the Zn_(1-x)Al_2 O_4:xEu~(2+) phosphor powders.The thermal quenching property of ZnAl_2 O_4:Eu~(2+)phosphor was investigated and the quantum efficiency(QE) values of the selected Zn_(0.99)Al_2 O_4:0.01 Eu~(2+) phosphor was measured and determined as 54.85%.The lifetime of the optimized sample Zn_(0.99)Al_2 O_4:0.01 Eu~(2+) is 3.0852 μs and the CIE coordinate of the sample was calculated as(0.3323,0.5538) with high-color-purity green emission.All properties indicate that the green-emitting ZnAl_2 O_4:Eu~(2+) phosphor powder has potential application in white LEDs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号