首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Novel classes and congeners of contaminant residues that are structurally analogous to polybrominated diphenyl ether (PBDE) flame retardants were assessed in the plasma of seven benthic- and six pelagic-feeding fish species from the highly contaminated Detroit River corridor, namely, hydroxylated-PBDEs (OH-PBDEs), methoxylated-PBDEs (MeO-PBDEs), and the antimicrobial OH-trichlorodiphenyl ether, triclosan, and its methylated (MeO) triclosan analogue. In all samples sigmaPBDE concentrations were comprised mainly of BDE47, BDE99, and BDE100 (>85%) and ranged from 155 pg/g wet weight (ww) to 21 069 pg/g ww. Of the 14 OH-PBDE congeners assessed, as many as 10 congeners were identified, although profiles were generally dominated by 6-OH-BDE47 with lesser amounts of 2'-OH-BDE68, 4'-OH-BDE49, and 4-OH-BDE42. sigmaOH-PBDE concentrations ranged from 2.7 to 198 pg/g ww, with sigmaPBDE to sigmaOH-PBDE concentration ratios ranging from 0.0005 to 0.02. OH-PBDEs are likely derived in these freshwater species as metabolites of precursor PBDEs and are subsequently retained in the blood, for example, 6-OH-BDE47, 4'-OH-BDE49, and 4-OH-BDE42 could be derived from BDE47. Portions of concentrations of the OH-PBDEs may also be of alternate origins and are accumulated and retained in these fish. In all samples, the 14 MeO-PBDEs monitored were below detection (<0.01 pg/g ww). Anthropogenic triclosan concentrations ranged from 750 to >10 000 pg/g ww and is clearly a bioaccumulative halogenated phenolic compound in these fish. MeO-triclosan concentrations were considerably lower. In addition to emerging classes of brominated contaminant such as PBDEs, whether of metabolic or anthropogenic origin, fish collected from the Detroit River are exposed to a complex profile of PBDE-like organohalogens.  相似文献   

2.
Prenatal exposure to polybrominated diphenyl ethers (PBDEs) may disrupt thyroid function and contribute to adverse neurodevelopmental outcomes. We conducted a pilot study to explore the relationship between serum concentrations of lower-brominated PBDEs (BDE-17 to -154), higher-brominated PBDEs (BDE-183 to -209), and hydroxylated PBDE metabolites (OH-PBDEs) with measures of thyroid function in pregnant women. Concentrations of PBDEs, OH-PBDEs, thyroid-stimulating hormone (TSH), total thyroxine (T(4)), and free T(4) were measured in serum samples collected between 2008 and 2009 from 25 second trimester pregnant women in California. Median concentrations of lower-brominated PBDEs and OH-PBDEs were the highest reported to date in pregnant women. Median concentrations of BDE-47 and the sum of lower-brominated PBDEs (ΣPBDE(5)) were 43.1 ng/g lipid and 85.8 ng/g lipid, respectively, and the sum of OH-PBDEs (ΣOH-PBDE(4)) was 0.084 ng/mL. We observed a positive association between the weighted sum of chemicals known to bind to transthyretin (ΣTTR binders) and TSH levels. We also found positive associations between TSH and ΣPBDE(5), ΣOH-PBDE(4), BDE-47, BDE-85, 5-OH-BDE47, and 4'-OH-BDE49, and an inverse association with BDE-207. Relationships with free and total T(4) were weak and inconsistent. Our results indicate that PBDE exposures are elevated in pregnant women in California and suggest a relationship with thyroid function. Further investigation is warranted to characterize the risks of PBDE exposures during pregnancy.  相似文献   

3.
The brominated flame retardants have been subject of a particular environmental focus in the Arctic. The present study investigated the congener patterns and levels of total hexabromocyclododecane (HBCD), polybrominated biphenyls, polybrominated diphenyl ethers (PBDEs), as well as methoxylated (MeO) and hydroxylated (OH) PBDEs in plasma samples of glaucous gulls (Larus hyperboreus) and polar bears (Ursus maritimus) from the Norwegian Arctic. The analyses revealed the presence of total HBCD (0.07-1.24 ng/g wet wt) and brominated biphenyl 101 (< 0.13-0.72 ng/g wet wt) in glaucous gull samples whereas these compounds were generally found at nondetectable or transient concentrations in polar bears. Sum (sigma) concentrations of the 12 PBDEs monitored in glaucous gulls (range: 8.23-67.5 ng/g wet wt) surpassed largely those of polar bears (range: 2.65-9.72 ng/g wet wt). Two higher brominated PBDEs, BDE183 and BDE209, were detected, and thus bioaccumulated to a limited degree, in glaucous gulls with concentrations ranging from < 0.03 to 0.43 ng/g wet wt and from < 0.05 to 0.33 ng/g wet wt, respectively. In polar bear plasma, BDE183 was < 0.04 ng/g wet wt for all animals, and BDE209 was only detected in 7% of the samples at concentrations up to 0.10 ng/g wet wt. Of the 15 MeO-PBDEs analyzed in plasma samples, 3-MeO-BDE47 was consistently dominant in glaucous gulls (sigmaMeO-PBDE: 0.30-4.30 ng/g wet wt) and polar bears (sigmaMeO-PBDE up to 0.17 ng/g wet wt), followed by 4'-MeO-BDE49 and 6-MeO-BDE47. The 3-OH-BDE47, 4'-OH-BDE49, and 6-OH-BDE47 congeners were also detected in glaucous gulls (sigmaOH-PBDE up to 1.05 ng/g wet wt), although in polar bears 4'-OH-BDE49 was the only congener quantifiable in 13% of the samples. The presence of MeO- and OH-PBDEs in plasma of both species suggests possible dietary uptake from naturally occurring sources (e.g., marine sponges and green algae), but also metabolically derived biotransformation of PBDEs such as BDE47 could be a contributing factor. Our findings suggest that there are dissimilar biochemical mechanisms involved in PCB and PBDE metabolism and accumulation/elimination and/or OH-PBDE accumulation and retention in glaucous gulls and polar bears.  相似文献   

4.
Residues of hydroxylated (OH-) and methoxylated (MeO-) polybrominated diphenyl ethers (PBDEs) have been previously detected in precipitation, surface waters, wildlife, and humans. We report measured concentrations of OH-PBDEs, MeO-PBDEs, and Br3-Br7 PBDEs in sediments and biota from a Canadian Arctic marine food web. PBDEs exhibited very low trophic magnification factors (TMFs between 0.1-1.6), compared to recalcitrant PCBs (TMFs between 3 and 11), indicating biotransformation via debromination and/or cytochrome P450 mediated metabolism. OH-PBDEs were not detectable in samples of blood, muscle, and/or liver of fish and marine wildlife. Five OH-PBDEs were detected at very low concentrations (range: 0.01-0.1 ng x g(-1) lipid equivalent) in beluga whale blubber and milk. The data indicate negligible formation/retention of OH-PBDEs in these Arctic marine organisms. Appreciable levels of several MeO-PBDEs were observed in bivalves, Arctic cod, sculpin, seaducks, and beluga whales (mean range 0.1-130 ng x g(-1) lipid equivalent). 2'-MeO-BDE-68 and 6-MeO-BDE-47 exhibited the highest concentrations among the brominated compounds studied (including BDE-47 and BDE-99) and biomagnified slightly in the food web, with TMFs of 2.3 and 2.6, respectively. OH- and MeO-PBDEs in this Arctic marine food web may occur via metabolic transformation of PBDEs or bioaccumulation of PBDE degradation products and/or natural marine products. We observed no evidence of a local natural source of OH- or MeO-PBDEs, as no measurable quantities of those compounds were observed in ambient environmental media (i.e., sediments) or macroalgae. Further investigations of PBDEs and their hydroxylated and methoxylated analogues would be useful to better understand sources, fate, and mechanisms governing biotransformation and bioaccumulation behavior of these compounds.  相似文献   

5.
Polybrominated diphenylethers (PBDEs) are ubiquitous in the environment, with the lower brominated congener 2,2',4,4'-tetrabromodiphenylether (BDE47) among the most prevalent. The phenolic PBDE, 6-hydroxy-BDE47 (6-OH-BDE47) is both an important metabolite formed by in vivo metabolism of BDE47 and a natural product produced by marine organisms such as algae. Although this compound has been detected in humans and wildlife, including fish, virtually nothing is known of its in vivo toxicity. Here we report that 6-OH-BDE47 is acutely toxic in developing and adult zebrafish at concentrations in the nanomolar (nM) range. To identify possible mechanisms of toxicity, we used microarray analysis as a diagnostic tool. Zebrafish embryonic fibroblast (PAC2) cells were exposed to 6-OH-BDE47, BDE47, and the methoxylated metabolite 6-MeO-BDE47. These experiments revealed that 6-OH-BDE47 alters the expression of genes involved in proton transport and carbohydrate metabolism. These findings, combined with the acute toxicity, suggested that 6-OH-BDE47 causes disruption of oxidative phosphorylation (OXPHOS).Therefore, we further investigated the effect of 6-OH-BDE47 on OXPHOS in zebrafish mitochondria. Results show unequivocally that this compound is a potent uncoupler of OXPHOS and is an inhibitor of complex II of the electron transport chain. This study provides the first evidence of the in vivo toxicity and an important potential mechanism of toxicity of an environmentally relevant phenolic PBDE of both anthropogenic and natural origin. The results of this study emphasize the need for further investigation on the presence and toxicity of this class of polybrominated compounds.  相似文献   

6.
Polybrominated diphenyl ethers (PBDEs) are of great environmental concern due to the exponential increase of the concentrations in the environment, especially in high trophic level organisms, and the trophodynamics of these chemicals in aquatic food webs is an important criterion for assessing their ecological risk. This study analyzed 13 PBDEs in the zooplankton, five invertebrate species, six fish species, and one marine bird species collected from Bohai Bay. PBDE concentrations in organisms from Bohai Bay (sigmaPBDEs: 0.15-32.8 ng/g lipid weight) were low compared with other marine organisms worldwide, and BDE-47 wasthe predominant compound in most samples,followed by BDE-28, BDE-99/BDE-100, and BDE-119. Correlation between lipid-normalized concentrations of PBDEs, and trophic levels determined by stable nitrogen isotope technologies confirmed that PBDEs were biomagnified in the marine food web. Significantly positive relationships were found fortotal PBDEs and four PBDE compounds (BDE-28, BDE-47, BDE-100, and BDE-119), and their trophic magnification factors (TMFs) were 3.53, 3.57, 7.24, 3.23, and 2.60, respectively. The concentration ratios between congeners (BDE-99/BDE-100 and BDE-99/BDE-47) were found to decrease with increasing trophic levels, suggesting that trophic-level-dependent concentrations ratios between BDE-99 and BDE-100 would be contributed by trophic level-dependent biotransformation between BDE-99 and BDE-47, and therefore resulting in the dominance of BDE-100 compared with BDE-99 and the relatively high trophic magnification of BDE-47 in the marine food web.  相似文献   

7.
Polybrominated diphenyl ethers (PBDEs) have been widely used as flame retardants over the last three decades, and are now ubiquitous in the marine environment. While the harmful effects of PBDEs on the abnormal development and reproductive impairment in mammals and fish are well documented, the effects on marine invertebrates remain virtually unknown. Using three model intertidal species accross three phyla, including the polychaete Hydroides elegans (Phylum Annelida), the gastropod Crepidula onyx (Phylum Mollusca), and the barnacle Balanus amphitrite (Phylum Arthopoda), this study demonstrated that (a) chronic exposure to BDE-47 (at spiking concentrations up to 1000 ng L(-1)) throughout the entire larval stage did not affect settlement, development or growth of all three species per se, despite bioaccumulation was clearly evident (measured body burden ranging from approximately 7000 to 13?000 ng BDE-47 g(-1) lipid), and (b) BDE-47, at measured concentrations of 15 and 113 ng g(-1) lipid, reduced the bacterial abundance in biofilms and resulted in a concomitant change in larval settlement pattern of all the model intertidal species across three phyla.  相似文献   

8.
We report on the identity, characterization, and spatial trends of several brominated flame retardants and hydroxylated (OH-) and methoxylated (MeO-) organohalogen contaminants in bald eagle (Haliaeetus leucocephalus) nestling plasma collected from sites along the west coast of North America. Samples were from four southwestern British Columbia (BC) locations, a reference site in northern BC (Fort St. James; FSJ), and from Santa Catalina Island, CA (SCI), an area of high DDT and PCB contamination. Mean concentrations of sigma polybrominated diphenyl ether (sigma PBDE (8 congeners monitored); 1.78-8.49 ng/g), sigma OH-polychlorinated biphenyl (sigma OH-PCB (30 congeners monitored); 0.44-0.87 ng/g), and sigma OH-PBDE (14 congeners monitored; 0.31-0.92 ng/g) were similar in eaglets from southwestern BC yet lower than for SCl and significantly higher than for FSJ. Dominant PBDE congeners were BDE47, BDE99, and BDE100, but SCl eaglets also contained low levels of higher brominated congeners. 4-OH-CB187 and 4'-OH-CB202 accounted for 65-100% of sigma OH-PCB in all BC eaglets, with 4'-OH-CB202 as well as 3'-OH-CB138 and 4-OH-CB146 dominating in SCl eaglets. Ostensibly of biogenic origin, 6'-OH-BDE49 and 6-OH-BDE47 were found in BC nestlings. Only 4'-OH-BDE49 (2.10 ng/g) was found in SCl eaglets. MeO-PBDEs and total hexabromocyclododecane (HBCD) were not found in any birds, but the polybrominated biphenyl BB101 was detected in southwestern BC samples. This study demonstrates that west coast North American bald eagles contain previously unreported organohalogens, which have the potential to impact the health and survival of these raptors.  相似文献   

9.
Polybrominated diphenyl ethers (PBDEs), hydroxylated (OH) and methoxylated (MeO), have been widely detected in aquatic environments. However, relationships among these structurally related compounds in exposed organisms are unclear. To elucidate biotransformation relationships among BDE-47, 6-OH-BDE-47, and 6-MeO-BDE-47, dietary accumulation, maternal transfer, and tissue distribution of these compounds and their transformation products were investigated in sexually mature Japanese medaka (Oryzias latipes). In addition, transformation of each compound was determined in vitro using liver microsomes of medaka. OH-PBDEs and MeO-PBDEs were not detected in fish exposed to BDE-47. However, significant concentrations of 6-OH-BDE-47 were detected in medaka or microsomes exposed to 6-MeO-BDE-47. Significant concentrations of 6-MeO-BDE-47 were also measured in fish exposed to 6-OH-BDE-47, but 6-MeO-BDE-47 was not detected in microsomes exposed to 6-OH-BDE-47. Similar patterns of transformation products were observed in medaka eggs from adult fish during exposure. This study presents direct in vivo evidence of biotransformation of 6-MeO-BDE-47 to 6-OH-BDE-47. In addition, this is the ?rst study to demonstrate biotransformation of 6-OH-BDE-47 to 6-MeO-BDE-47. Demethylation of 6-MeO-BDE-47 was the primary transformation pathway leading to formation of 6-OH-BDE-47 in medaka, while the previously hypothesized formation of OH-PBDEs from synthetic BDE-47 did not occur. Biotransformation products formed in adult female medaka were transferred to eggs.  相似文献   

10.
Fish oil dietary supplements (FODS) are recommended to increase the intake of polyunsaturated fatty acids (PUFAs), renowned for their beneficial effects on human health. However, FODS also contain anthropogenic contaminants, such as polychlorinated biphenyls and polybrominated diphenyl ethers (PBDEs). Sixty-nine (n=69) PUFA-enriched FODS from 37 producers were collected in 2006 and then analyzed for their levels of organobrominated compounds. Levels of the sum of tri- to hepta-BDEs (BDEs 28, 47, 49, 66, 85, 99, 100, 153, 154, and 183) were typically below 5 ng/g oil, while only a few had higher values of up to 44 ng/g oil. Several peaks in the chromatograms were identified as methoxylated PBDEs (MeO-PBDEs) and polybrominated hexahydroxanthene derivatives (PBHDs). These two groups of compounds have been suggested to be produced by marine organisms (e.g., algae and sponges) and have also been reported in marine samples, such as fish and marine mammals. Median concentrations of MeO-PBDEs and PBHDs (6.2 and 5.3 ng/g oil, respectively) were higher than median concentrations of PBDEs (0.6 ng/g oil), and their maximum values were 1670 and 200 ng/g oil, respectively. FODS are intended to be consumed on a daily basis, and the median daily intakes of MeO-PBDEs and PBHDs from FODS were 3 and 6 times higher than the median intake of PBDEs (3 ng/day). Consumption of FODS does not appear to substantially increase the total dietary intake of PBDEs since the median daily intake  相似文献   

11.
Chicken eggs categorised as conventional, omega-3 enriched, free range and organic were collected at grading stations in three regions of Canada between 2005 and 2006. Free run eggs, which were only available for collection from two regions, were also sampled during this time frame. Egg yolks from each of these egg types (n = 162) were analysed to determine brominated flame retardant levels, specifically polybrominated diphenyl ethers (PBDEs) and hexabromocyclododecane (HBCD). PBDEs were detected in 100% of the 162 samples tested, while HBCD was observed in 85% of the egg yolks. Total PBDE concentrations in egg yolks ranged from 0.018 to 20.9 ng g(-1) lipid (median = 3.03 ng g(-1) lipid), with PBDE 209 identified as being the major contributor to ΣPBDE concentrations. In addition to PBDE 209, PBDE 99, 47, 100, 183 and 153 were important contributors to ΣPBDE concentrations. Total HBCD concentrations ranged from below the limit of detection to a maximum concentration of 71.9 ng g(-1) lipid (median = 0.053 ng g(-1) lipid). The α-isomer was the dominant contributor to ΣHBCD levels in Canadian egg yolks and was the most frequently detected HBCD isomer. ΣPBDE levels exhibited large differences in variability between combinations of region and type. ΣHBCD concentrations were not significantly different among regions, although differences were observed between the different types of egg yolks analysed in the present study.  相似文献   

12.
Polybrominated diphenyl ethers (PBDEs) are ubiquitous environmental contaminants due to their use as flame retardants. Similarly to PCBs, the PBDEs are metabolized to hydroxylated metabolites (OH-PBDEs) in mammals. In the present study equimolar doses of seven environmentally relevant PBDE congeners were given intraperitoneally as a mixture to rats, and their blood plasma was analyzed for parent compounds and hydroxylated metabolites 1 and 5 days after dosing. Sixteen OH-PBDEs and two diOH-PBDEs were detected as PBDE metabolites in the rat plasma, a novel finding. Four OH-tetraBDEs were structurally identified by comparison (gas chromatography/mass spectrometry) with authentic reference standards. The position of the hydroxyl groups was suggested according to the mass spectrometric fragmentation patterns of the corresponding PBDE methyl ether derivatives. The OH-PBDE metabolites were dominated by hydroxyl groups in the meta- and parapositions. The results show that OH-PBDE congeners have an ability to be retained in rat blood, most likely by a mechanism similar to that of OH-PCBs. The results will be useful for determination of the origin of OH-PBDEs present in wildlife and in humans, since OH-PBDEs are also common natural products in marine environments.  相似文献   

13.
Hydroxylated polybrominated diphenyl ethers (OH-PBDEs) have been identified as metabolites of PBDEs, and also as compounds of natural origin in the marine environment; however, there has only been very limited study of their presence in the abiotic environment. In the present study, OH-PBDEs were determined in samples of surface water and precipitation (rain and snow) collected from sites in Ontario, Canada. OH-PBDEs were detected in all the samples analyzed, although half of the observed peaks did not correspond to any of the 18 authentic standards available. Fluxes of sigmaOH-PBDEs ranged from 3.5 to 190 pg/m2 in snow and from 15 to 170 pg/m2/day in rain, and those were higher at three of the southern Ontario locations relative to a single northern remote site. Concentrations of sigmaOH-PBDEs ranged from 2.2 to 70 pg/L in water and from < 1 to 420 pg/g in particulate organic carbon (POC), and higher values were found near sewage treatment plant (STP) outfalls in Lake Ontario. Partition coefficients (log K(oc)) for OH-PBDEs ranged from 4.0 to 5.1. The results in this study suggest that OH-PBDEs are ubiquitous in the abiotic environment and most likely are produced through reaction of PBDEs with atmospheric OH radicals. As well, they may be present in surface waters near STPs due to oxidation of PBDEs and inflows from metabolism by humans and animals.  相似文献   

14.
A novel brominated flame retardant (BFR), tris(2,3-dibromopropyl) isocyanurate (TBC), as well as hexabromocyclododecanes (HBCDs) and polybrominated diphenyl ethers (PBDEs), were analyzed in 11 species of mollusks collected from nine coastal cities around the Chinese Bohai Sea in 2009 and 2010. The detection frequencies were 100%, 99%, and 77% for PBDEs, HBCDs, and TBC, respectively. Concentrations of ∑HBCDs ranged from below detection limit (nd) to 28.8 ng g(-1) on a dry weight (dw) basis, followed by ∑(12)PBDE (0.01-20.4 ng g(-1) dw) and TBC (nd-12.1 ng g(-1) dw). Statistically significant linear correlations were found among the three BFRs. Positive correlations were found between BFRs concentrations and lipid content in mollusks. The concentrations tend to decrease with increasing trophic levels of the mollusks, implying trophic dilution rather than biomagnifications of the BFRs in the aquatic food chains of the sampling area. Among the 11 mollusks species, Mytilus edulis showed higher bioaccumulation capability than others and was therefore considered to be an appropriate bioindicator of contamination by the BFRs in the Chinese Bohai Sea, in agreement with its previous selection for the biomonitoring of organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs). A dramatic decrease in PBDE concentrations in mollusks of the area was found for the time period from 2003 to 2010, with a half-life of only 2.3 ± 1.7 years, reflecting a rapid response of mollusks to the change in pollution of the marine environment.  相似文献   

15.
Soils play an important role in the distribution and biogeochemical cycling of polybrominated diphenyl ethers (PBDEs) as they are a major reservoir and sink for PBDEs due to their large sorption capacity. In this study, concentrations, compositional profiles, mass inventories, and fate of sigma9PBDEs (28, 47, 66, 100, 99, 154, 153, 138, 183) and BDE 209 were investigated in 33 surface soils, six profile soils, and three point-source polluted soils (close to e-waste dismantling sites) from the Pearl River Delta (PRD), China. The concentrations of sigma9PBDEs and BDE 209 in the surface soils ranged from 0.13 to 3.81 ng/g with an average of 1.02 ng/g and from 2.38 to 66.6 ng/g with an average of 13.8 ng/g, respectively, and ranged from 1.93 to 19.5 ng/g and from 25.7 to 102 ng/g, respectively, in the point-source contaminated soils. The PBDE compositional patterns in the surface soils indicated deca-BDE, penta-BDE, and octa-BDE products as the main sources, but those in the point-source samples suggested deca-BDE and octa-BDE technical mixtures as the dominant sources. The mass inventories of PBDEs in soils of the PRD were estimated at 3.98 and 44.4 t for sigma9PBDEs and BDE 209, respectively. The average loading of PBDEs in the soils was comparable to that in the sediments of the Pearl River Estuary, suggesting that soil erosion and surface runoff are an important mode to transport PBDEs from terrestrial sources to oceans in the PRD. Individual BDE congeners, sigma9PBDEs, and PBDE 209, were significantly correlated with total organic carbon (TOC), and a good regression (except for BDE 47) between the logarithms of TOC-normalized BDE average concentrations and their log K(ow) was also obtained, indicating that sorption of PBDEs on soil organic matter governed their spatial distribution, transportation, and fate in the soils. Predicted aqueous and gaseous concentrations of PBDEs were derived from the soil-water and soil-air partitioning models, respectively, and good agreements were obtained between the predicted and previously reported values. BDE 47 and/or 28 did not appear to follow the same trend for these models, an indication that an portion of them was likely the biodegradation byproducts in soils.  相似文献   

16.
Nine species of marine fish, including teleost fishes, sharks, and stingrays, and two species of marine mammals (dolphins) collected from Florida coastal waters were analyzed for polybrominated diphenyl ethers (PBDEs) and polychlorinated biphenyls (PCBs) to evaluate biomagnification factors (BMF) of these contaminants in a coastal foodweb. In addition, bottlenose dolphins and bull sharks collected from the Florida coast during the 1990s and the 2000s were analyzed for evaluation of temporal trends in PBDE and PCB levels in coastal ecosystems. Mean concentrations of PBDEs in muscle tissues of teleost fishes ranged from 8.0 ng/g, lipid wt (in silver perch), to 88 ng/g, lipid wt (in hardhead catfish), with an overall mean concentration of 43 +/- 30 ng/g, lipid wt. Mean concentrations of PBDEs in muscle of sharks ranged from 37.8 ng/g, lipid wt, in spiny dogfish to 1630 ng/g, lipid wt, in bull sharks. Mean concentrations of PBDEs in the blubber of bottlenose dolphins and striped dolphins were 1190 +/- 1580 and 660 ng/g, lipid wt, respectively. Tetra-BDE 47 (2,2',4,4'-) was the major congener detected in teleost fishes and dolphin samples, followed by BDE-99, BDE-153, BDE-100, and BDE-154. In contrast, BDE-209 was the most abundant congener in sharks. Concentrations of PBDEs and PCBs in dolphins and sharks were 1-2 orders of magnitude greater than those in lower trophic-level fish species, indicating biomagnification of both of these contaminants in the marine foodweb. Based on the analysis of sharks and dolphins collected over a 10-year period, an exponential increase in the concentrations of PBDEs and PCBs has occurred in these marine predators. The doubling time of PBDE and PCB concentrations was estimated to be 2-3 years for bull sharks and 3-4 years for bottlenose dolphin.  相似文献   

17.
Methoxylated polybrominated diphenyl ethers (MeO-PBDEs) and hydroxylated PBDEs (OH-PBDEs) have recently been identified in fish and wildlife from the Baltic Sea. Both OH-PBDEs and MeO-PBDEs are known natural products, while OH-PBDEs also may be metabolites of PBDEs. The aim of the present study was to determine if the red macroalga Ceramium tenuicorne could be a source for MeO- and OH-PBDEs in the Baltic environment. Blue mussels (Mytilus edulis) from the same area were also investigated for their content of MeO- and OH-PBDEs. Seven OH-PBDEs and four MeO-PBDEs were present both in the red macroalga and the blue mussels. The mussels also contained a monochlorinated OH-tetraBDE. One of the compounds, 6-methoxy-2,2',3,4,4',5-hexabromodiphenyl ether, has never been reported to occur in the environment. The identification was based on comparison of relative retention times with reference standards, on two gas chromatographic columns of different polarities, together with comparisons of full-scan electron capture negative ionization (ECNI) and electron ionization (EI) mass spectra. It is shown that MeO-PBDEs and OH-PBDEs are present in algae, but at this stage it could not be confirmed if the compounds are produced by the alga itself or by its associated microflora and/or microfauna.  相似文献   

18.
Bioaccumulation of persistent organic compounds can eventually lead to concentrations in wildlife and humans that are deleterious to health. The present paper documents the identification, quantification, and synthesis of a novel compound, 2,2'-dimethoxy-3,3',5,5'-tetrabromobiphenyl (2,2'-diMeO-BB80), present in the marine mammals Striped dolphin (Stenella coeruleoalba), Bottlenose dolphin (Tursiops truncatus), Minke whale (Balaenoptera acutorostrata), and Baird's beaked whale (Berardius bairdii) caught in the Pacific Ocean. Identification was based on comparison of the relative retention times of the compound on two gas chromatographic columns of different polarities to those of an authentic standard. Furthermore, this identification was also supported by comparison of the full scan mass spectrometric data collected employing electron ionization (El), positive ion chemical ionization (PICI), and electron capture negative ionization (ECNI). The concentrations of 2,2'-diMeO-BB80 in the samples ranged from 12 to 800 ng/g lipid, making this consistently one of the most abundant compounds among those analyzed, including polybrominated diphenyl ethers (PBDEs), hexabromocyclododecane (HBCDD), and methoxylated PBDEs. The known occurrence of 3,3',5,5'-tetrabromo-2,2'-biphenyldiol (2,2'-diOH-BB80) in the marine environment as a natural product suggests that its methylated derivative, 2,2'-diMeO-BB80, is also of natural origin. To obtain the necessary authentic standards, synthesis was performed of 2,2'-diMeO-BB80 and the known natural product 2',6-dimethoxy-2,3',4,5'-tetrabromodiphenyl ether (2',6-diMeO-BDE68).  相似文献   

19.
ABSTRACT

Polybrominated diphenyl ethers (PBDEs) are a class of brominated flame retardants whose use has contaminated foods and caused subsequent human exposures. To address the issue of possible human exposure, samples from a 2012–13 US meat and poultry (beef, pork, chicken, turkey) study were analysed for seven PBDEs. The mean summed concentrations of the seven BDE congeners (ΣPBDE) from beef, pork, chicken and turkey were 0.40, 0.36, 0.19, and 0.76 ng g–1 lipid weight (lw). The range of ΣPBDEs for all meat classes was 0.01–15.78 ng g–1 lw. A comparison of this study with a 2007–08 study revealed a decline in the median ΣPBDEs for all four meat classes, a reduction of 25.9% to 70.0%, with pork, chicken and turkey PBDE residues being statistically lower relative to the 2007–08 study. BDEs 47 and 99 contributed the most to the ΣPBDE concentrations, indicating likely animal exposures to the penta-BDE formulation. Based on the reported data an estimate of US consumer daily intake of PBDEs from meat and poultry was 6.42 ng day–1.  相似文献   

20.
Individual polybromodiphenyl ethers (PBDEs) were investigated in liver and muscle tissue of trout from 11 high mountain lakes in Europe and one in Greenland. Trouts in these lakes [brown trout (Salmo trutta), brook trout (Salvelinus fontinalis) and arctic char (Salvelinus alpinus)] are important sentinel species because they are located in the top of the food chain and pollution can only reach these ecosystems by atmospheric transport. The major PBDE congeners were BDE 47 and BDE 99, followed by BDE 100, BDE 153, BDE 154, and BDE 28. These compounds were found in all the samples examined. Their average concentrations [110-1300 and 69-730 pg g(-1) wet weight (ww) in liver and muscle or 2400-40000 and 2900-41000 pg g(-1) lipid weight (lw), respectively] were in the lower range when compared with those of fish from other less remote locations. The highest levels of PBDEs in liver and muscle are found in Lochnagar, Scotland: 11000 and 1200 pg g(-1) ww, respectively (366 000 and 177000 pg g(-1) lw, respectively). Male specimens exhibited higher PBDE concentrations in liver than female. The concentrations of most PBDEs in liver were correlated with fish age (p < 0.01) and, inversely, with condition factor (p < 0.01). Muscle PBDE concentrations did not correlate with age, and only some congeners showed significant positive correlations with condition factor (p < 0.05). The main differences between species were found in the accumulation of the more abundant PBDEs, brook trout showing the highest concentrations in muscle and the lowest in liver. No correlation between the occurrence of these compounds in high mountain fish and altitude, latitude, or temperature was observed. This fact and the lack of correlation between muscle concentrations and age suggest that the fluxes of PBDEs arriving at high mountain lakes are still not constant. In view of the present use of these compounds, they are probably increasing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号