首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
建立一种分层剪滞模型,研究了含割口的正交叠层板在拉伸载荷作用下的应力重新分布问题,获得了割口前缘完整纤维的应力集中因子。在此基础上,采用复合材料的细观统计破坏理论,研究了割口正交叠层板的拉伸破坏强度,得到与现有实验较吻合的结果。  相似文献   

2.
CG-FRP混杂筋的研制及试验研究   总被引:1,自引:0,他引:1  
采用低延伸率的碳纤维和高延伸率的玻璃纤维的层内混杂方式,通过拉挤工艺生产得到了混杂CG-FRP筋.CG-FRP筋的总纤维体积率为65%,碳纤维和玻璃纤维的混杂比例为1:6.标准拉伸力学试验结果表明,CG-FRP混杂筋表现出较为明显的“屈服”现象,平均“屈服”强度和平均极限抗拉强度分别为1507.0MPa和1676.5MPa,后“屈服”阶段的应变量约为弹性阶段应变量的23%.CG-FRP筋的平均弹性模量为88.01GPa,平均泊松比为0.274.研究表明,该混杂筋存在较为明显的混杂效应,协同工作性能较好,筋的弹性模量和极限抗拉强度也得到了显著的提高.  相似文献   

3.
为了研究GFRP/钢绞线复合筋混凝土梁的开裂性能,设计了5根GFRP/钢绞线复合筋混凝土梁试件,并对混凝土梁试件进行三分点静载试验研究,试验变量为混凝土梁截面尺寸和混凝土保护层厚度.在系统分析试验数据的基础上,提出GFRP/钢绞线复合筋混凝土梁抗裂承载力与最大裂缝宽度的计算方法,并给出使用荷载作用下的裂缝宽度限值.  相似文献   

4.
通过设计10组HFRP试件的拉伸性能对比试验,分析研究不同面密度,不同厚度,不同混杂比对复合材料拉伸性能影响,提出了层间混杂纤维在拉伸强度一致的前提下,延性最大的混合匹配的优化设计方案,对实际工程结构加固具有较强的适应性.  相似文献   

5.
含孔复合材料层合板拉伸强度研究   总被引:6,自引:1,他引:6  
对含孔复合材料层合板的破坏模式和拉伸强度进行了研究,考查了孔的直径和形状对层合板强度的影响.通过实验研究,测量出含孔层合板的强度.利用有限元软件ABAQUS的子程序USDFLD建立了逐渐损伤失效模型,对层合板的强度进行了数值模拟.研究结果表明,数值模拟得到的强度值和实验测量的强度值吻合较好,文中建立的数值模型可以有效地预测含孔层合板的强度.  相似文献   

6.
某电厂组合钢柱破坏机理计算分析及其加固处理方法   总被引:3,自引:0,他引:3  
局部屈曲是组合钢柱常见的失效模式之一.结合某电厂组合钢柱承载坍塌现象,用三维有限元法计算出该组合钢柱的极限荷载,指出了该组合钢柱的破坏机理与破坏过程,并探讨了该类钢柱的局部稳定性问题,提出了解决同类问题的一般性方法.  相似文献   

7.
Stress analysis of cylindrical grid-stiffened composite shells was conducted under transverse loading,pure bending,torsion and axial compression under clamped-free boundary condition.Electrical strain gauges were employed to measure the strains in transverse loading case to validate the finite element analysis which was conducted using ANSYS software.Good agreement was obtained between the two methods.It was observed that stiffening the composite shell with helical ribs decreased the average equivalent Von Mises stress on the shell.The reduction of the stress seemed to be higher in the intersection of two ribs.It was also seen that the stress reduction ratio was higher when the structure was under bending compared to torsion and axial compression.The reduction ratio was approximately 75% in pure bending in the intersection point of the ribs,while it was approximately 25% in torsion.Therefore,it is concluded that the presence of the ribs is more effective under bending.Failure analysis was done using Tsai-Wu criterion.The ribs were observed to result in maximum and minimum increase in the failure load of the structure under transverse bending and torsional loading,respectively.  相似文献   

8.
为研究后插钢筋位置等对套筒灌浆搭接接头(简称APC接头)力学性能的影响,进行了45个该接头拉伸试验,研究了其破坏形态、延性、极限承载力和套筒应变等,并利用ABAQUS进行数值模拟和参数分析。试验结果表明:接头的初始刚度和延性随两钢筋距离的增大而降低;钢筋与套筒接触和钢筋间距离减小均使接头承载力降低,前者对黏结强度降低起控制作用;极限荷载时偏转(两钢筋圆心连线)方向套筒中部截面纵向受压,钢筋拉断破坏试件,其套筒中部截面压应变随钢筋直径增大而增大;极限荷载时套筒中部截面环向应变以拉应变为主,且环向平均拉应力随钢筋直径增大而增大。基于ABAQUS进行了接头精细化数值模拟,与试验结果吻合较好。模拟参数分析表明:偏转降低试件的极限承载力,偏转对发生钢筋拔出破坏试件的极限承载力影响较大,对发生钢筋拉断破坏试件的影响较小;随搭接长度增加,黏结应力曲线峰值先增大后减小,曲线饱满程度先减小后增大。根据前期及本次试验拟合得到的极限黏结强度计算公式适用性较好,可作为实际工程参考。  相似文献   

9.
为实现无湿作业、无焊接条件下将单向预制板横向钢筋拉通受力并形成双向板,考虑施工效率和可操作性,提出钢板组合单边螺栓钢筋连接件.为研究连接件抗拉性能,对22个试件进行单调拉伸试验,研究参数为钢板强度、螺栓个数、预紧力大小和锚固长度,重点考察破坏形态、极限承载力、荷载-位移曲线及变形能力.试验研究表明:此类连接件存在钢筋拉...  相似文献   

10.
纤维素/氧化硅有机-无机杂化复合气凝胶的研究进展   总被引:1,自引:0,他引:1  
依据纤维素与SiO_2的复合工艺特点,综述了采用溶液浸渍法、直接混合法和逐层沉积法制备纤维素/SiO_2有机—无机杂化复合气凝胶材料的研究现状.探讨了纤维素的不同溶解或分散状态和SiO_2引入方式对形成纤维素/SiO_2复合气凝胶的影响,分析了纤维素与SiO_2之间具有的组织结构特征和结合机理,并对比了不同工艺方法获得的纤维素/SiO_2复合气凝胶材料在力学、隔热、光学、疏水性、生物等方面所呈现的性能特点.基于有机纤维素与无机SiO_2的物理化学特性,指出了两者复合时面临的问题,并对潜在的应用前景进行了展望.  相似文献   

11.
为了准确分析纤维增强复合陶瓷内复合晶粒力学性能,提出了一种考虑纳观界面应力集中效应的复合晶粒强度预测方法.基于纤维增强复合陶瓷的显微结构特征,考虑纳米纤维间的相互作用,应用有效自洽法确定纳观界面模型的有效应力场;假设纳观界面处基体和纤维间的应力和位移均连续,利用叠加法将单向拉伸应力状态分解为双向均匀拉伸状态和纯剪切应力状态的组合,根据纤维增强复合陶瓷承受横向载荷的位移函数得到纳观界面附近基体和纤维的位移场和应力场,并计算了纳观界面产生的应力集中因子,综合考虑了复合晶粒内纳观界面和位错塞积相互作用导致的应力集中效应,建立了纤维增强复合陶瓷中复合晶粒的断裂应力预报模型.分析了增强纤维半径和体积分数对复合晶粒断裂应力的影响,结果表明:增强纤维半径越小,断裂应力越大,复合晶粒强度越高,且增强纤维半径大于50 nm后,半径大小对复合晶粒断裂应力影响较小;纤维体积分数越大,断裂应力越小,复合晶粒越易发生破坏.  相似文献   

12.
基于PZT的钢筋混凝土结构健康监测已经得到了广泛应用,为了研究基于导向波法的PZT型钢筋结构损伤监测机理,并进一步优化监测系统,使用有限元软件ANSYS对PZT型钢筋构件进行数值模拟和分析。选取合适的材料参数、单元类型和网格尺寸等,建立精细化的轴对称有限元模型进行机电耦合分析;将模拟结果与之前所做试验数据进行对比,精确的吻合度验证了有限元模拟的准确性,为损伤机理分析和试验优化奠定基础;改变模型中PZT与钢筋的接触方式,输出信号值是原模型信号的5倍左右,进而提出增强系统输出信号的优化方法。通过此研究,得出可通过数值模拟对PZT型钢筋探伤系统进行分析并得到改进系统以增加信号的方法。  相似文献   

13.
为了讨论weak-link比例对强度预测的适用范围,基于纤维增强复合材料的渐进破坏机理,考虑纤维强度的统计特性,采用Monte-Carlo方法对材料在热/机械载荷作用下的拉伸强度分布进行了数值模拟分析。研究结果表明:在形状参数β =10的条件下,如果希望通过weak-link缩放比例对大尺寸材料的强度分布进行预测,则复合材料的临界尺寸应达到25根纤维的规模。分析认为:小尺寸材料拉伸强度的分散性趋于稳定,即达到临界尺寸,是采用weak-link比例预测大尺寸材料强度分布规律的先决条件。研究方法为进一步发展基于损伤机理分析的复合材料在循环载荷作用下的疲劳寿命预测理论奠定了基础。  相似文献   

14.
根据土钉墙受力特点,考虑钉土相互作用,建立了计算模型,并采用剪滞法理论来分析复合土体的受力性能及土钉的受拉性能,得出了土钉受拉荷载的解析解。与现有土钉受拉力的计算方法及现场观测结果作了比较,理论分析与实测结果吻合较好,从而验证了计算模型及分析方法的可行性。  相似文献   

15.
为了获得组合梁徐变应力重分布的计算公式,以一个单轴对称并受到弯矩和轴力作用的组合梁截面为研究对象,建立混凝土徐变的微分本构关系,采用内力分配法得到组合梁弯矩和轴力重分布的微分方程组。为了避免求该方程组的精确解所需复杂的数学计算,通过有效的简化获得方程组的实用近似解,并通过算例进行精确性验证。计算结果表明:方程组的近似解与精确解的误差非常小,能达到合理的计算精度;混凝土徐变对组合梁长期应力影响显著,计算时应得到足够的重视。文中采用的内力分配法适用性较广,无论是何种荷载形式,不管结构是静定还是超静定,只要内力能换算成作用在组合梁截面中和轴处的弯矩和轴力,都可以使用该方法。  相似文献   

16.
以CFRP和GFRP 2种复合材料为例,研究正交复合材料在冲击载荷作用下的拉伸力学性能。首先,介绍了Hopk inson杆冲击拉伸实验设备以及实验技术,对实验中涉及的试件连接技术问题进行了分析讨论,并提出了相应对策。推导了应力、应变的计算公式。对CFRP、GFRP层合板进行了冲击拉伸实验研究,得到不同加载率下2种层板的应力-应变(σ-ε)曲线,以及断裂强度、拉伸模量、断裂应变随加载速率的变化规律,以期对复合材料层板在冲击拉伸情况下动态力学行为和变形、破坏机理获得初步认识。  相似文献   

17.
基于剪切滞后模型,考虑基体承受轴向拉伸载荷,建立了金属基复合材料在多纤维断裂下应力场分布的求解方法,计及了基体和界面塑性变形对应力传递的影响。引入影响函数叠加原理,充分考虑多重损伤间的相互耦合作用,有效解决了复合材料的非线性变形问题。数值结果表明:本文建立的理论模型与实验结果吻合较好。  相似文献   

18.
本文改进了Whitney的点应力准则,在距孔边一特征长度的圆周上应用Tsai-Wu张量准则.改进后的准则可应用于非对称铺层含孔板,并且除了可以确定含孔板的破坏强度,也可以确定孔边开裂位置,应用这一方法对含圆孔的偏轴板拉伸进行了分析,并与实验作了比较,二者吻合较好.  相似文献   

19.
阶梯形修理复合材料层合板拉伸性能研究   总被引:1,自引:0,他引:1  
为获得不同参数对阶梯形修理结构拉伸力学性能的影响,本文开展了试验研究.针对铺层数目为8层的复合材料层合板,分别研究了阶梯数目为2个、4个和8个的无附加层的情况.另外针对4个阶梯的情况,研究了附加层数目的影响.作为对比,对相同修理区大小情况下的斜切形挖补修理结构也进行了测试.结果显示,对阶梯形修理结构,拉伸强度随阶梯数目的增加而增加,当阶梯数目由2个增加到8个时,修理接头的强度恢复率由36%增加到67%.通过引入附加层能够有效的提高修理结构的强度,但随着附加层的引入以及附加层数目的增加,修理结构强度的分散性变大.阶梯形修理和斜切形挖补修理的对比显示,相同修理面积的情况下,由于斜切形挖补修理能够提供更加均匀的胶膜应力分布,斜切形挖补的修理效率要高于阶梯形修理,相比4个阶梯的阶梯形修理,斜切形挖补修理强度能够提高25%.最后,根据修理接头表面各点的应力/应变分布规律,获得了拉伸载荷作用下修理接头的失效机理和失效过程.  相似文献   

20.
随着我国新型建筑工业化的推进,作为工业化主要构件的叠合板得到了大力的发展,但是,多数叠合板拼缝处的钢筋构造复杂,生产、施工较为困难,为此,针对一种简单拼缝构造方式的双向自支撑叠合板进行了全过程受力机理研究,同时对该种叠合板进行了足尺试验,并与同样大小的双向现浇板进行了试验对比,结果表明,该种叠合板的破坏形态与现浇板基本相同。在此基础上,结合数值模拟技术,着重研究了该种叠合板的双向受力机理,裂缝开展及分布,拼缝处钢筋的粘结滑移及传力性能。并系统地对该种叠合板在多种情况下的破坏机理进行了分析,为该种叠合板的设计和应用提供了很多有益的参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号