首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Slow strain rate testing (SSRT) was employed to study the stress corrosion cracking (SCC) behavior of ZE41 magnesium alloy in 0.01 M NaCl solution. Smooth tensile specimens with different thicknesses were strained dynamically in both longitudinal and transverse direction under permanent immersions at a strain rate of 10−6 s−1. It is found that ZE41 magnesium alloy is susceptible to SCC in 0.01 M NaCl solution. The SCC susceptibility of the thinner specimen is lower than that of the thicker specimen. Also, the longitudinal specimens are slightly more susceptible to SCC than the transverse specimens. The SCC mechanism of magnesium alloy is attributed to the combination of anodic dissolution with hydrogen embrittlement. Funded by the National Natural Science Foundation of China (No. 50771093)  相似文献   

2.
RRE-Mg66 alloy with a composition of Mg-6.0%Zn-1.0%Y-0.6%Ce-0.6Zr was prepared by combinatorial processes of rapid solidification, reciprocating extrusion and extrusion. Microstructure was evaluated on SEM and TEM. The average grain size of the alloy is 0.7 ??m, the size of the second phase at grain boundary is 0.15 ??m, and the size of the intragranular precipitates in round shape is less than 20 nm. Superplastic behavior of the material was investigated in a temperature range of 150 to 250 °C and initial strain rate range of 3.3×10?4 to 3.3×10?2 s?1 in air. The highest elongation of 270% was obtained at 250 °C and 3.3× 10?3 s?1. High-strain-rate superplasticity and low-temperature superplasticity were achieved. The superplasticity results from intragranular sliding (IGS) at temperatures from 170 to < 200 °C and grain boundaries sliding (GBS) at 250 °C. At 200 °C a combination of IGS and GBS contributes to the superplastic flow.  相似文献   

3.
A high-Mg2Si content Al alloy was extruded by equal channel angular pressing (ECAP) for 8 passes at 250 °C and an ultrafine-grained structure with an average grain size of about 1.5 μm was achieved. The coarse skeleton-shaped Mg2Si phase presenting in the as-cast alloy are significantly fragmented into fine rod-shaped as well as equiaxed particles mostly less than about 230 nm and become relatively dispersed. The tensile strength 192.8 MPa and the elongation up to 31.3% at ambient temperature are attained in the 8-pass ECAPed alloy versus 163.3 MPa and 9.1% in the as-cast alloy. High-temperature creep test at 250 °C reveals that the ECAPed sample exhibits a high elongation close to 100% at a relatively high creep rate 7.64×10−5 s−1, compared to the elongation 56% at a low strain rate 1.74×10−7 s−1 in the as-cast alloy.  相似文献   

4.
Constitutivemodelisamathematicalrepresentationofthedeformationresponseofamaterialtoexternallyap pliedloading ,includingenvironmentalfactors .Thepre ciseknowledgeoftheconstitutivebehaviorofthematerialisthefoundationofnumericalsimulationtechnologyofmateri…  相似文献   

5.
7A52铝合金电化学局部腐蚀行为   总被引:2,自引:0,他引:2  
为进一步研究7A52铝合金的耐蚀性能和应力腐蚀敏感性,运用电化学方法研究了7A52铝合金在3.5%NaCl溶液中的局部腐蚀行为.用光学显微镜、扫描电子显微镜观察了腐蚀形貌.试验结果表明,Mg2Si首先发生阳极溶解,一些尺寸较小的Mg2Si被完全腐蚀,产生自身的点蚀坑.然后Mg2Si的电位正移与周围基体形成新的腐蚀电偶,其边缘基体作为阳极被腐蚀.被腐蚀的基体形成空穴,Al3+在空穴中聚集并水解,空穴中产生酸性环境.被空穴包围的Mg2Si脱离基体,形成更大的点蚀坑.AlMnFe在整个试验中并未发生腐蚀.  相似文献   

6.
In order to study the effect of intermaetallics on the corrosion behaviour of 7A52 aluminum alloy,the alloy was characterized by means of SEM-EDS and scanning Kelvin probe force microscopy(SKPFM).The experimental results indicate that there are two different intermetallics:Al-Mn-Fe and Mg2Si.Both intermetallics exhibite the negative volta potential relative to the matrix indicating an anodic behaviour.Hereby,they are easy to be dissolved and corroded under the erosive environment,and there become the corrosion initiation sites.The Al-Mn-Fe intermetallics show stronger anodic behaviour than those of Mg2Si intermetalics.It means that Al-Mn-Fe intermetalics are easier to be corroded.  相似文献   

7.
The microstructure and flow stress of the Mg-12Gd-3Y-0.5Zr magnesium alloy was investigated by compression test at temperatures ranging from 350 to 500 ℃ and the strain rates ranging from 0.01 to 20 s-1. The flow stress of the magnesium alloy increased with strain rate and decreased with deformation temperature. Flow stress can be expressed in terms of the Zener-Hollomon parameter Z, which describes the combined influence of the strain rate and temperature using an Arrhenius function.The values of the deformation activation energy were estimated to be 245.9 and 171.5 kJ/mol at deformation temperatures below 400 ℃ and above 400 ℃, respectively. Two constitutive equations were developed to quantify the effect of the deformation conditions on the flow stress of the magnesium alloy. The effects of deformation temperature and strain rate on the microstructure of the magnesium alloy were also examined and quantified by measuring the volume fraction of dynamically recrystallized grain Xd. Xd increased with increasing of deformation temperature. When the deformation temperature was below 475 ℃, Xd decreased with strain rate until it reached 0.15 s-1, then it increased again. When the deformation temperature was above 475 ℃, Xd increased with strain rate.  相似文献   

8.
1IntroductionAs a typical wrought magnesiumalloy,AZ31alloyhas a wide prospect for applications inthe fields of auto-mobiles,electronic appliances and aeronautic facili-ties[1,2].However,due to the hexagonal close-packed(HCP)structure of magnesium,the ductility of AZ31al-loy at roomtemperature is rather poor,which greatly re-stricts its applications in structural fields[3-5].Owing tothe activation of non-basal slip system[6],the ductility ofMg alloycan be significantlyimproved at elevatedtem…  相似文献   

9.
The experimental tests of tensile for lead-free solder Sn-3.5Ag were performed for the general work temperatures range from 11 to 90 °C and strain rate range from 5×10−5 to 2×10−2 s−1, and its stress—strain curves were compared to those of solder Sn-37Pb. The parameters in Anand model for solder Sn-3.5Ag were fitted based on experimental data and nonlinear fitting method, and its validity was checked by means of experimental data. Furthermore, the Anand model was used in the FEM analysis to evaluate solder joint thermal cycle reliability. The results show that solder Sn-3.5Ag has a better creep resistance than solder Sn-37Pb. The maximum stress is located at the upper right corner of the outmost solder joint from the symmetric center, and thermal fatigue life is predicted to be 3.796×104 cycles under the calculated conditions. Foundation item: Project(50376076) supported by the National Natural Science Foundation of China  相似文献   

10.
To study the internal damage of concrete under freeze-thaw cycles, concrete strains were measured using embedded strain gauges. Residual strain and coefficients of freezing expansion (CFE) derived from strain-temperature curves were used to quantify the damage degree. The experimental results show that irreversible residual strain increases with the number of freeze-thaw cycles. After 50 cycles, residual strains of C20 and C35 concretes are 320με and 100με in water, and 120 με and 60 με in saline solution, respectively. In lower temperature range (-10 ℃ to -25 ℃) CFE of C20 and C35 concretes decrease by 9.82×10-6/K and 8.44×10-6/K in water, and 9.38×10-6/K and 5.47×10-6/K in saline solution, respectively. Both residual strains and CFEs indicate that during the first 50 freeze-thaw cycles, the internal damage of concrete in saline solution is less than that of concrete in water. Thus residual strain and CFE can be used to measure the frost damage of concrete.  相似文献   

11.
The diffusion process of hydrogen in aluminum melts was investigated by molecular dynamics simulation. The pair correlation function, first peak position, and coordination number was calculated and differences in the structural properties among Al-H, Cl-H, and Al-Cl pair were examined. The mechanism of chlorine on improving hydrogen diffusion was discussed. From an ab initio molecular dynamics calculations, the diffusivity of hydrogen in liquid aluminum as D(T)=(0.118×10-4 m2/s)exp(-0.316 eV/kT) is obtained, which is in good agreement with the experimental data. Correspondingly the diffusivity with presence of chlorine is promoted as D(T)=(0.09×10-4 m2/s)exp(-0.251 eV/kT). It can be concluded that the diffusion of hydrogen in aluminum melts can be enhanced in the presence of chlorine.  相似文献   

12.
Flow stress equation for multipass hot-rolling of aluminum alloys   总被引:7,自引:0,他引:7  
Theflowstressofamaterialrelatesnotonlytothestrain ,strainrate ,andtemperatureofde formation,butalsotothemicrostructure .Asanessentialinputforcomputermodelingthermome chanicalprocessingoperationsusingfiniteelementmethods,anaccurateflowstressvalueorflowstre…  相似文献   

13.
Superplastic behaviors of quasicrystal phase containing Mg-5.8Zn-1Y-0.48Zr alloy sheets fabricated by combination of extrusion and hot-rolling processes have been investigated at temperature ranging from 623 to 753 K and at the strain rates ranging from 10-4 to 10-2 s-1 by uniaxial tensile tests. An excellent superplasticity with the maximum elongation to failure of 1020% was obtained at 753 K and the strain rate of 1.04×10-3 s-1 and its strain rate sensitivity, m, is as high as up to 0.75. The microstructure was stable during superplastic deformation due to the uniformly distributed fine quasicrystal particles. In addition, micro-cavities and their coalescences were observed in the superplastic deformation of the ZW61 magnesium alloy. Grain boundary sliding (GBS) was considered to be the main deformation mechanism during the superplastic deformation. Dislocation creep controlled by atom diffusion through grain boundaries or interior grains is suggested mainly to accommodate the GBS in super-plastic deformation.  相似文献   

14.
Based on the data from the Medium-Energy Proton and Electron Detector(MEPED)onboard NOAA-17,141 anomalies of a Chinese Sun-Synchronous satellite(SSO-X)that occurred between 02/01/2010 and 09/31/2012 were studied statistically.About 26 out of the 52 anomalies that occurred outside the South Atlantic Anomaly(SAA)were accompanied by energetic electron storms.Superposed Epoch Analysis(SEA)was used to analyze the properties of the anomalies and the dynamics of the space environments during these 26 events.Then,a Monte Carlo method was utilized to simulate the electron deposition and the interactions of the injected electrons with an aluminum shield and polyethylene dielectric.The average,median,and75th percentile values of the maximum electric field strength inside the dielectric were calculated.The results showed the following.(1)SSO-X anomalies are more likely to occur within the SAA,as 89 out of 141 anomalies(63%)occurred there.(2)Twenty-six of the anomalies that occurred outside the SAA during energetic electron storms were located near the outer boundaries of the outer radiation belts,and these were more frequent in the Southern Hemisphere than in the Northern Hemisphere.(3)Electron flux enhancements occurred around the failure time at all energy levels but were more profound in the lower energy channels.The maximum fluxes of electrons30 ke V,100 ke V,and300 ke V were 106,3.5×10~5,and 1.2×10~6cm~(-2) s~(-1)sr~(-1),respectively.(4)The average,median,and 75th percentile values of the maximum electric field strengths inside the dielectric for the aforementioned 26 events remained in the range from 10~6 to 10~7 V/m for long time periods,which suggests that the‘potential hazards’of internal discharges cause SSO-X anomalies.The above results can provide useful information for the design and protection of sun-synchronous spacecraft.  相似文献   

15.
The characteristics of hot deformation of an α+β titanium alloy Ti-6.5Al-3.5Mo-1.5Zr-0.3Si with acicular microstructure were studied using isothermal hot compressive tests in a strain rate range of 0.01-10 s-1 at 860-1 100 °C. The true stress-true strain curves of alloy hot-compressed in the α+β region exhibit a peak stress followed by continuous flow softening; whereas in the β region,the flow stress attains a steady-state regime. At a strain rate of 10 s-1 and in a wide temperature range,the alloy exhibit...  相似文献   

16.
1 INTRODUCTIONDuringhotworking ,severalmetallurgicalphenomenasuchaswork hardening (WH ) ,dynamicrecovery (DRV) ,anddynamicre crystallizaiton (DRX )occursimultaneous ly[1 5 ] .Especially ,theoccurrenceofDRX ,canrefinegrainandreducedeformationresistanceinpracticalhot w…  相似文献   

17.
AA6061-10 vol.% SiC composite was successfully prepared by spark plasma sintering. The deformation behaviour of this composite was studied using the uniaxial compression test, which was conducted at temperatures between 300 and 500°C and strain rates between 0.001 and 1 s-1. Results indicate that the stress-strain curves of the AA6061-10 vol.% SiC composite typically feature dynamic recrystallization. The steady stress can be described by a hyperbolic sine constitutive equation, and the activation energy of the composite is 230.88 k J/mol. The processing map was established according to the dynamic materials model. The optimum hot deformation temperature is 450–500°C and the strain rate is 1–0.1 s-1. The instability zones of flow behaviour can also be identified using the processing map.  相似文献   

18.
为了研究Mg-Gd-Y镁合金在高应变速率下的动态拉伸性能及失效机制,采用分离式Hopkinson拉杆(SHTB)装置在室温下且应变速率为1 400~3 000 s-1范围内对其进行了动态拉伸实验,并利用光学显微镜和扫描电子显微镜对动态拉伸后的镁合金试样进行了分析.结果表明,在动态拉伸载荷作用下,Mg-Gd-Y镁合金沿ED方向呈现连续屈服现象.应变速率增大后,Mg-Gd-Y镁合金具有正应变速率效应.在动态拉伸载荷作用下,Mg-Gd-Y镁合金的断口形貌呈解理断裂特征,镁合金的变形方式为孪生和滑移,且滑移为主要变形方式。  相似文献   

19.
Xiao  Rui  Hou  Bing  Sun  QingPing  Zhao  Han  Li  YuLong 《中国科学:技术科学(英文版)》2021,64(7):1401-1411
This work presents mechanical properties of the NiTi polycrystalline superelastic shape memory alloys(SMA) of 5 different grain sizes under high-speed impacts. The amorphous, nanocrystalline(40, 80, 120 nm) and coarse grain(20 μm) sheets are manufactured with cold rolling and suitable heat treatments. A Hopkinson tensile bar is used to perform tests up to 45 m/s. Highspeed camera system and digital image correlation method are used to get the strain field and particle velocity field at a sampling frequency of 2×10~6 frames/s with a resolution of 924×768 pixels. Nominal stress-strain curves are obtained for all the sheets with a strain rate of about 1000 s~(-1) and they have a similar evolution to the quasi-static case but with much higher stress levels. The rate sensitivity is increased with the grain size and the stress level can reach up to a 70% growth for a coarse grain sheet but be totally insensitive for the amorphous sheet in the strain rate from 10~(-4) to 10~3 s~(-1). A single transformation front can be found under high-speed impact(45 m/s) at the early loading stage. The speed of the transformation front is calculated from strain time histories and the highest front speed of 811 m/s is observed which is never observed before. It also reveals that the front speed depends also on the grain size. With the same loading speed, the bigger the grain size is, the slower the transformation front speed is.  相似文献   

20.
The microstructure,localized corrosion (LC) and stress corrosion cracking (SCC) behavior of 7003 aluminum alloy (AA7003) under various aging treatments (peak aging (PA),double peak aging (DPA),regression and re-aging (RRA)) were investigated by means of transmission electron microscope (TEM),scanning electron microscopy (SEM),electrochemical impendence spectroscopy (EIS) and slow strain rate tensile test.The results of TEM showed a discontinuous distribution of grain boundary precipitates of AA7003 under DPA and RRA treatments,which is beneficial for increasing the resistance of LC and SCC.Meanwhile,LC was found initiating firstly on intermetallics which caused the dissolution of surrounding matrix,then pitting holes were formed and developed into matrix.In addition,the SCC process of AA7003 could be divided into two stages,i e,initial pre-cracking and breeding cracking.The EIS analysis,cross-section morphologies and fracture surfaces of specimens indicated that DPA and RRA treatments significantly decreased the crack growth rate during breeding cracking stage,especially for RRA treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号