首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
A phosphatase which exhibits strong activity toward phosphorylated atrial natriuretic peptide (ANP) was identified in the soluble fraction of rat brain homogenate. This ANP phosphatase has a neutral pH optimum, does not require divalent cations for activity, is inhibited by low concentrations of okadaic acid (50% inhibition at 1 nM) and preferentially dephosphorylates the alpha subunit of phosphorylase kinase. These properties are characteristic of serine/threonine protein phosphatase type 2A (PP2A). The apparent molecular mass of the ANP phosphatase (160 kDa), as estimated by gel filtration, is similar to that of the native heterotrimeric form of PP2A. In addition, phosphorylated ANP is an excellent substrate for the purified catalytic subunit of PP2A (Km = 42 microM, Vmax = 10.3 mumol x min-1 x mg-1). In contrast, protein phosphatase 2B (PP2B) has only very low ANP phosphatase activity (Km = 2.5 microM, Vmax = 0.008 mumol x min-1 x mg-1), and the catalytic subunit of protein phosphatase type 1 (PP1) as well as purified protein phosphatase type 2C (PP2C) are essentially inactive on ANP. These findings are consistent with the observation that PP2A-like activity accounts for virtually all ANP dephosphorylation in brain homogenate. While the phosphorylation of ANP in vitro by cAMP-dependent protein kinase is well documented, this is a first report on a phosphatase that efficiently can reverse this modification.  相似文献   

2.
An extracellular polysaccharide, which we designate GA3P, produced from a marine microalga dinoflagellate Gymnodinium sp. A3, has been previously reported to induce apoptosis in lymphoid and myeloid cell lines. We found that the GA3P accumulates cells into the mitotic phase of the cell cycle and decreases nuclear protein phosphatase 1 (PP1) activity in a dose-dependent manner in myeloid leukemia U937 cells. Dose-dependent patterns in the decrease of nuclear PP1 activity and in the accumulation of cells into mitotic phase or apoptotic status by the GA3P were concordant with each other, indicating that the decrease of nuclear PP1 activity at least mediates some of the etiological steps in development of mitotic arrest and apoptosis induced by the GA3P. In addition, the GA3P repressed the expression of protein levels of the PP1 catalytic subunit isoform PP1 gamma 1 gamma 1. We thus suggest that the decrease of nuclear PP1 activity is due to down-regulation of the protein levels of the PP1 gamma 1.  相似文献   

3.
Phosphorylation has been implicated in the regulation of microtubule (MT) stability and function by controlling the interactions between MTs and MT-associated proteins. We found previously that protein phosphatase inhibitors selectively break down stable MTs, suggesting that protein phosphatases may be involved in regulating MT stability. To identify the protein phosphatases involved, we examined purified calf brain MTs and found a protein phosphatase activity that copurified with MTs to constant stoichiometry. Western blot analysis and inhibitor profiles demonstrated that the MT-associated phosphatase was a type 1 protein phosphatase (PP1), which we named PP1MT. Recombinant PP1 catalytic subunit (PP1c) did not bind to MTs, whereas PP1MT did bind, suggesting the presence of proteins that target PP1 to MTs. By Sepharose CL-6B chromatography, the phosphatase activity of PP1MT eluted as a large protein complex of approximately 400 kDa. High salt (2 M NaCl) treatment followed by CL-6B chromatography dissociated PP1MT into PP1c and the MT-targeting subunit(s). The MT-targeting subunit was shown to be the MT-associated protein tau by PP1 blot overlays and other assays. Also, recombinant tau reconstituted the binding of PP1c to MTs. These results identify PP1 as the first tau binding protein and suggest that tau is a novel PP1-targeting subunit.  相似文献   

4.
pRb controls cell proliferation by restricting inappropriate entry of cells into the cell division cycle. As dephosphorylation of pRb during mitotic exit activates its growth suppressive function, identification of the protein phosphatase that dephosphorylates pRb, and characterization of the mechanism of its regulation, are essential to elucidating the mechanisms of cell growth control. By fractionating mitotic CV-1P cell extracts, we identify the protein phosphatase which dephosphorylates pRb as a type 1 serine/threonine phosphoprotein phosphatase (PP1). Molecular sizing analyses indicate that the catalytic enzyme (PP1c) is present in a high molecular weight complex, with a predicted molecular mass of 166 kDa. PP1-interacting proteins in the mitotic cell extracts are identified. Two PP1-interacting proteins (41 and 110 kDa) are shown to form distinct complexes with PP1c from fractions of separated mitotic cell extracts containing phosphorylase phosphatase activity. However, only the 110-kDa PP1-interacting protein is present in fractions containing pRb-directed phosphatase activity, identifying this protein as a putative activator of PP1 function toward pRb during mitosis.  相似文献   

5.
In the insulin producing cell line RINm5F distribution of serine/threonine specific protein phosphatases type 1 (PP1) and 2A (PP2A) was studied. Using different agents which inhibit or stimulate PP1 and PP2A we found that in membrane and nuclear fractions phosphatase activity was inhibited by okadaic acid (OA), protamine, heparin, and inhibitor-2 in a concentration-dependent manner. C2-ceramide had no effect. In the cytosolic fraction the inhibitory effect of okadaic acid was tenfold higher. Protamine stimulated phosphatase activity at low concentrations and became inhibitory at higher concentrations. Inhibitor-2 and heparin caused a decrease in phosphatase activity whereas C2-ceramide led to a slight activation. The data suggest that in membrane and nuclear fractions of RINmSF cells predominantly PP1 is present, whereas in the cytosol PP1 as well as PP2A can be detected.  相似文献   

6.
Dendritic spines receive the vast majority of excitatory synaptic contacts in the mammalian brain and are presumed to contain machinery for the integration of various signal transduction pathways. Protein phosphatase 1 (PP1) is greatly enriched in dendritic spines and has been implicated in both the regulation of ionic conductances and long-term synaptic plasticity. The molecular mechanism whereby PP1 is localized to spines is unknown. We have now characterized a novel protein that forms a complex with the catalytic subunit of PP1 and is a potent modulator of PP1 enzymatic activity in vitro. Within the brain this protein displays a remarkably distinct localization to the heads of dendritic spines and has therefore been named spinophilin. Spinophilin has the properties expected of a scaffolding protein localized to the cell membrane and contains a single consensus sequence in PSD95/DLG/zo-1, which implies cross-linking of PP1 to transmembrane protein complexes. We propose that spinophilin represents a novel targeting subunit for PP1, which directs the enzyme to those substrates in the dendritic spine compartment, e.g., neurotransmitter receptors, which mediate the regulation of synaptic function by PP1.  相似文献   

7.
At the onset of mitosis, the nuclear lamins are hyperphosphorylated leading to nuclear lamina disassembly, a process required for nuclear envelope breakdown and entry into mitosis. Multiple lamin kinases have been identified, including protein kinase C, that mediate mitotic lamin phosphorylation and mitotic nuclear lamina disassembly. Conversely, lamin dephosphorylation is required for nuclear lamina reassembly at the completion of mitosis. However, the protein phosphatase(s) responsible for the removal of mitotic phosphates from the lamins is unknown. In this study, we use human lamin B phosphorylated at mitosis-specific sites as a substrate to identify and characterize a lamin phosphatase activity from mitotic human cells. Several lines of evidence demonstrate that the mitotic lamin phosphatase corresponds to type 1 protein phosphatase (PP1). First, mitotic lamin phosphatase activity is inhibited by high nanomolar concentrations of okadaic acid and the specific PP1 peptide inhibitor, inhibitor-2. Second, mitotic lamin phosphatase activity cofractionates with PP1 after ion exchange chromatography. Third, microcystin-agarose depletes mitotic extracts of both PP1 and lamin phosphatase activity. Our results demonstrate that PP1 is the major mitotic lamin phosphatase responsible for removal of mitotic phosphates from lamin B, a process required for nuclear lamina reassembly.  相似文献   

8.
Although the available evidence suggests that whereas the caspase family plays a major role in apoptosis, they are not the sole stimulators of death. A random yeast two-hybrid screen of a lymphocyte cDNA library (using caspase-3 as the bait) found an interaction between caspase-3 and the regulatory subunit Aalpha of protein phosphatase 2A. This protein was found to be a substrate for caspase-3, but not caspase-1, and could compete effectively against either a protein or synthetic peptide substrate. In Jurkat cells induced to undergo apoptosis with anti-Fas antibody, protein phosphatase 2A (PP2A) activity increased 4.5-fold after 6 h. By 12 h, the regulatory Aalpha subunit could no longer be detected in cell lysates. There was no change in the amount of the catalytic subunit. The effects on PP2A could be prevented by the caspase family inhibitors acetyl-Asp-Glu-Val-Asp (DEVD) aldehyde or Ac-DEVD fluoromethyl ketone. The mitogen-activated protein (MAP) kinase pathway is regulated by PP2A. At 12 h after the addition of anti-Fas antibody, a decrease in the amount of the phosphorylated forms of MAP kinase was observed. Again, this loss of activated MAP kinase could be prevented by the addition of DEVD-cho or DEVD-fmk. These data are consistent with a pathway whereby induction of apoptosis activates caspase-3. This enzyme then cleaves the regulatory Aalpha subunit of PP2A, increasing its activity. These data show that the activated PP2A will then effect a change in the phosphorylation state of the cell. These data provide a link between the caspases and signal transduction pathways.  相似文献   

9.
The carboxyl-terminal domain of the gamma134.5 protein of the herpes simplex virus 1 binds to protein phosphatase 1alpha (PP1) and is required to prevent the shut-off of protein synthesis resulting from phosphorylation of the alpha subunit of eIF-2 by the double-stranded RNA-activated protein kinase. The corresponding domain of the conserved GADD34 protein homologous to gamma134.5 functionally substitutes for gamma134.5. This report shows that gamma134.5 and PP1 form a complex in the infected cells, that fractions containing this complex specifically dephosphorylate eIF-2alpha, and that both gamma134.5 and GADD34 proteins contain the amino acid sequence motif common to subunits of PP1 that is required for binding to the PP1 catalytic subunit. An oligopeptide containing this motif competes with gamma134.5 for binding to PP1. Substitution of Val193 and Phe195 in the PP1-binding motif abolished activity. These results suggest that the carboxyl-terminal domain of gamma134.5 protein has the structural and functional attributes of a subunit of PP1 specific for eIF-2alpha, that it has evolved to preclude shut-off of protein synthesis, and that GADD34 may have a similar function.  相似文献   

10.
We have found that modification of rat PC12 cells with pertussis toxin resulted in an approximately 50% inhibition of a protein phosphatase 2A-like phosphatase. Protein phosphatase 2A (PP2A) is a major cellular serine/threonine-specific protein phosphatase. Treatment of extracts from pertussis toxin-modified PC12 cells with either immobilized alkaline phosphatase or Ca2+ reversed this inhibition. Reactivation of the PP2A-like phosphatase in Ca2+ appears to result from the dephosphorylation of a protein by the Ca2+/calmodulin-dependent protein phosphatase calcineurin. The PP2A-like phosphatase in extracts from pertussis toxin-modified PC12 cells eluted from a Mono Q column at a higher ionic strength than did the PP2A-like phosphatase in extracts from control cells. After incubation in Ca2+, the PP2A-like phosphatase in extracts from pertussis toxin-modified cells eluted from a Mono Q column at the same ionic strength as did the PP2A-like phosphatase in extracts from control cells. These results indicate that the effect of pertussis toxin on this PP2A-like activity results from the phosphorylation of either one of the subunits of the PP2A-like phosphatase or a protein that when phosphorylated binds to and inhibits this phosphatase. Pertussis toxin modification did not result in the phosphorylation of the catalytic subunit of PP2A. Because phosphorylation regulates the activities of many enzymes and cell surface receptors, a pertussis toxin-induced decrease in PP2A activity could alter signaling pathways and other cellular processes in which G proteins are not directly involved.  相似文献   

11.
We investigated serine/threonine protein phosphatase (PP) activity and the expression of PP2A during growth and differentiation of epidermal keratinocytes in culture. Keratinocyte PP activity was strongly inhibited by calyculin A and okadaic acid, indicating that the activity was mainly due to PP2A and PP1. The phosphatase activity decreased to about 20% of the initial (day 1) level by the time of confluence and to about 10% at day 7 postconfluence. In contrast to activity, the level of expression of the PP2A catalytic subunit protein and the mRNA for the two isoforms increased slightly over the period of growth. Keratinocyte differentiation was shown by a significant increase in profilaggrin expression after confluence. Keratinocytes were also cultured from individuals affected with harlequin ichthyosis. This severe hyperkeratotic skin disorder has abnormal lipid structures and is blocked in the PP2A-dependent conversion of phosphorylated profilggrin to the non-phosphorylated filaggrin. The PP activity in harlequin cultures was lower than in normal cultures (about 20% of the subconfluent normal control value) and decreased even further in confluent cultures. In contrast, the level of expression of the PP2A catalytic subunit protein and mRNA for the two isoforms was similar to that of normal keratinocytes and increased with confluence. These results suggest that PP activity in keratinocytes is regulated in a post-translational manner; they also support the possibility of impaired or reduced function of PPs in harlequin ichthyosis.  相似文献   

12.
Alterations in protein phosphatase 2A (PP2A) during retinoic acid-induced differentiation of HL-60 cells have been investigated. PP2A activity of HL-60 cells for phosphorylated myelin basic protein showed a sharp and transient increase after 18-h treatment with 1 microM retinoic acid, which corresponded to G1/S boundary of the cell cycle. This PP2A of the 18-h treated cells was eluted from a DEAE-Sepharose column with 0.13 M NaCl, while PP2A from control cells was eluted with 0.23 M NaCl. The phosphorylase phosphatase activity of PP2A in the 0.13 M eluate was greatly enhanced in the presence of protamine compared with that of the later eluting PP2A. Immunoblot analyses with antisera against B' and B alpha subunits showed that the PP2A in the 0.13 M NaCl eluate from 18-h retinoic acid-treated cells was PP2A0 (AC-B'), whereas the PP2A eluted with 0.23 M NaCl from 24-h retinoic acid-treated cells and 0-, 18-, and 24-h control cells was PP2A1 (AC-B alpha). These results strongly suggest that PP2A undergoes a transient and reversible interconversion of holoenzyme forms during the initial stage of retinoic acid-induced granulocytic differentiation. PP2A activity assayed after dissociation of the catalytic subunit, for phosphorylase as substrate, showed a sharp and transient decrease in S phase of HL-60 cells irrespective of the presence or absence of retinoic acid. Immunoblot analyses with antisera against C-terminus and N-terminus of the catalytic subunit of PP2A suggested that a modification at the C-terminus is responsible for the decrease in PP2A activity. Immunoreactivity to the C-terminal antibody was restored after treatments of the S-phase extract with alkali or ethanol, the conditions which remove the methyl group from the C-terminus. These results suggest that the C-terminus of PP2A catalytic subunit is transiently methylated in S phase of HL-60 cells.  相似文献   

13.
Cantharidin, a natural toxicant of blister beetles, is a strong inhibitor of protein phosphatases types 1 (PP1) and 2A (PP2A). Like okadaic acid, cantharidin inhibits the activity of the purified catalytic subunit of PP2A (IC50 = 0.16 microM) at a lower concentration than that of PP1 (IC50 = 1.7 microM) and only inhibits the activity of protein phosphatase type 2B (PP2B) at high concentrations. Dose-inhibition studies conducted with whole cell homogenates indicate that cantharidin also inhibits the native forms of these enzymes. Thus, cantharidin, which is economical and readily available, may be useful as an additional probe for studying the functions of serine/threonine protein phosphatases.  相似文献   

14.
The protein phosphatase activity of peripheral blood T lymphocytes (PBLs) was examined to quantify the contribution of calcineurin and other members of the family of serine/threonine protein phosphatases. Using selective phosphatase inhibitors, the fractional phosphatase activities of calcineurin, protein phosphatases 1 (PP1), 2A (PP2A), and 2C (PP2C) were determined. Okadaic acid was used to inhibit the activity of both PP1 and PP2A while cyclosporin A/cyclophilin or trifluoperazine were used as a specific inhibitors of the calmodulin-dependent phosphatase calcineurin. Using a [32P]labeled 19-residue phosphopeptide substrate, RII peptide, it was found that PP1 and PP2A comprise the majority of the total phosphatase activity in PBLs with okadaic acid inhibiting 80% of the phosphatase activity. The remaining 20% of the phosphatase activity can be attributed primarily to calcineurin since it was Ca2+ dependent, sensitive to inhibition by the calmodulin antagonist trifluoperazine, and inhibited by the complex of cyclosporin A (CsA) and cyclophilin. These results indicate that PBL extracts contain little PP2C activity. In addition, PBLs treated with CsA had measurably lower calcineurin activity in cell lysates. The measurement of calcineurin activity may provide a useful means of assessing the extent of immunosuppression during drug therapy.  相似文献   

15.
Recently, we demonstrated that the 36 kDa catalytic subunit of protein phosphatase 2A (PP2Ac) undergoes methylation at its C-terminal leucine in normal rat islets, human islets and isolated beta cells; this modification increases the catalytic activity of PP2A [Kowluru et al. Endocrinology. 137:2315-2323, 1996]. Previous studies have suggested that adenine and guanine nucleotides or glycolytic intermediates [which are critical mediators in beta cell function] also modulate phosphatase activity in the pancreatic beta cell. Therefore, we examined whether these phosphorylated molecules specifically regulate the carboxyl methylation and the catalytic activity of PP2A in beta cells. Micromolar concentrations of ATP, ADP, GTP or GDP each inhibited the carboxyl methylation of PP2Ac and, to a lesser degree, the catalytic activity of PP2A. Likewise, the carboxyl methylation of PP2Ac and its catalytic activity were inhibited by [mono- or di-] phosphates of glucose or fructose. Additionally, however, the carboxyl methylation of PP2Ac was significantly stimulated by divalent metal ions (Mn2+ > Mg2+ > Ca2+ > control). The nucleotide or sugar phosphate-mediated inhibition of carboxyl methylation of PP2Ac and the catalytic activity of PP2A were completely prevented by Mn2+ or Mg2+. These data indicate that divalent metal ions protect against the inhibition by purine nucleotides or sugar phosphates of the carboxyl methylation of PP2Ac perhaps permitting PP2A to function under physiologic conditions. Therefore, these data warrant caution in interpretation of extant data on the regulation of phosphatase function by purine nucleotides.  相似文献   

16.
This review has presented some of the recent data on myosin phosphatase from smooth muscle. Although it is not conclusive, it is likely that most of the myosin phosphatase activity is represented by a holoenzyme composed of three subunits. These are: a catalytic subunit of 38 kDa of the type 1 phosphatase, probably the delta isoform (i.e. PP1c delta); a subunit of about 20 kDa whose function is not established; and a larger subunit that is thought to act as a target subunit. This is termed the myosin phosphatase target subunit, MYPT. Various isoforms of MYPT exist and the relatively minor distinctions are in the C-terminal leucine zipper motifs and/or with inserts in the central region. Many regions of the molecule are highly conserved, including the ankyrin repeats in the N-terminal part of the molecule and the sequence around the phosphorylation site. In addition, these isoforms all contain the four residue PP1c-binding motif (Arg/Lys-Val/Ile-Xaa-Phe). MYPT has been detected in a variety of cells and thus is not unique to smooth muscle. With phosphorylated myosin as substrate, the phosphatase activity of PP1c is low and is enhanced on addition of MYPT. It is assumed that MYPT functions as a target subunit and binds to both PP1c and substrate. The N-terminal fragment of MYPT is responsible for the activation of PP1c activity, but how much of the N-terminal sequence is required is not established. An important point is that activation is not a general effect and is specific for myosin. It is not known if other substrates may be targeted to MYPT. There are two binding sites for PP1c on MYPT: a strong site in the N-terminal segment (containing the 4-residue motif) and a weaker site in the ankyrin repeats, possibly in repeats 5, 6 and 7. The location(s) of the myosin-binding sites on MYPT is controversial, and binding of myosin, or light chain, to both N- and C-terminal fragments has been reported. Regulation of myosin phosphatase activity involves changes in subunit interactions, although molecular mechanisms are not defined. There are basically two theories proposed for phosphatase inhibition (i.e. as seen in the agonist-induced increase in Ca2+ sensitivity). One hypothesis is that phosphorylation of Myosin light chain phosphatase MYPT (at residue 654 or 695 of the gizzard MYPT isoforms or an equivalent residue) inhibits the activity of the MP holoenzyme. The kinase involved is not established, but may be an unidentified endogenous kinase or a RhoA-activated kinase. The latter is an attractive possibility because there is convincing evidence that RhoA plays a crucial role in the Ca(2+)-sensitizing process in smooth muscle. A second idea involves arachidonic acid. This is released via phospholipase A2 and could either interact directly with MYPT and cause dissociation of the holoenzyme (thus effectively reducing the phosphatase activity to that of the isolated catalytic subunit), or it could activate a kinase that would phosphorylate MYPT and inhibit the phosphatase. It is possible that MP activity may also be activated, for example, following increases in cAMP and/or cGMP. Evidence in support of this is very limited and under in vivo conditions the phosphorylation of MYPT by the respective kinases has not been demonstrated. There is, however, a tentative hypothesis based on in vitro data that phosphorylation of MYPT by PKA alters its cellular localization. This involves a shuttle between the dephosphorylated membrane-bound and inhibited state (at least towards P-myosin) to a phosphorylated cytosolic or cytoskeletal, and active state. The pathway(s) discussed above originates at the cell membrane and is carried via one or more messengers to the level of the contractile apparatus where it is manifested by regulation of phosphatase activity. Various components of the route have been identified, including RhoA and the atypical PKC isoforms, but more remain to be discovered. It is possible that more than one pathway, or cascade, is  相似文献   

17.
Okadaic acid (OA)-resistant variants of Chinese hamster ovary cells, clones CHO/OAR6-6 and CHO/OAR2-3, were isolated from a CHO-K1 culture. These variant cells were 17- to 26-fold more resistant to OA than the parental cells. The phosphorylase phosphatase activity of the variant cell extracts was 2- to 4-fold more resistant to OA than that of the parental cells in the presence of inhibitor 2, a specific inhibitor of type 1 protein serine/threonine phosphatase (PP1). Nucleotide sequencing of PP2A alpha (an isotype of PP2A catalytic subunit) cDNA demonstrated that both variants have a T-->G transversion at the first base of codon 269 (805 nt), which results in substitution of glycine for cysteine. We expressed in COS-1 cells a mutant PP2A alpha tagged with the influenza hemagglutinin epitope. The recombinant mutant PP2A alpha protein immunoprecipitated with an anti-influenza hemagglutinin antibody was more resistant than the wild type to OA, their IC50 values being 0.65 nM and 0.15 nM, and their IC80 values being 4.0 nM and 0.45 nM, respectively. The cysteine at residue 269 present only in highly OA-sensitive protein serine/threonine phosphatase catalytic subunit isozymes, PP2A alpha, PP2A beta, and PPX, is suggested to be involved in the binding of OA. CHO/OAR6-6 and CHO/OAR2-3 cells also overexpressed the P-glycoprotein, and the efflux of OA was more rapid. It is suggested that the PP2A alpha mutation in cooperation with a high level of P-glycoprotein makes the CHO-K1 variants highly resistant to OA.  相似文献   

18.
The Saccharomyces cerevisiae open reading frame YFR003c encodes a small (155-amino acid) hydrophilic protein that we identified as a novel, heat-stable inhibitor of type 1 protein phosphatase (Ypi1). Ypi1 interacts physically in vitro with both Glc7 and Ppz1 phosphatase catalytic subunits, as shown by pull-down assays. Ypi1 inhibits Glc7 but appears to be less effective toward Ppz1 phosphatase activity under the conditions tested. Ypi1 contains a 48RHNVRW53 sequence, which resembles the characteristic consensus PP1 phosphatase binding motif. A W53A mutation within this motif abolishes both binding to and inhibition of Glc7 and Ppz1 phosphatases. Deletion of YPI1 is lethal, suggesting a relevant role of the inhibitor in yeast physiology. Cells overexpressing Ypi1 display a number of phenotypes consistent with an inhibitory role of this protein on Glc7, such as decreased glycogen content and an increased growth defect in a slt2/mpk1 mitogen-activated protein kinase-deficient background. Taking together, these results define Ypi1 as the first inhibitory subunit of Glc7 identified in budding yeast.  相似文献   

19.
The cDNA encoding human brain protein phosphatase inhibitor-1 (I-1) was expressed in Escherichia coli. Following PKA phosphorylation at a threonine, recombinant human I-1 was indistinguishable from rabbit skeletal muscle I-1 as a potent and specific inhibitor of the type-1 protein serine/threonine phosphatase (PP1). N-Terminal phosphopeptides of I-1 that retained the selectivity of intact human I-1 highlighted a functional domain that mediates PP1 inhibition. Substituting alanine in place of threonine-36 eliminated I-1 phosphorylation by PKA and its phosphatase inhibitor activity. An acidic residue was substituted in place of the phosphoacceptor to produce I-1(T35D), a constitutive phosphate inhibitor. I-1(T35D) was an equally effective inhibitor of PP1 and the type-2 phosphatase, PP2A. However, CNbr digestion of I-1(T35D) yielded an N-terminal peptide that showed 100-fold increased specificity as a PP1 inhibitor. This provided new insight into a unique conformation of the phosphorylated I-1 that accounts for selective inhibition of PP1 activity. Truncation of an active I-1 phosphopeptide identified an N-terminal sequence that was reduced in addition to threonine-35 phosphorylation to inhibit PP1 activity. Biosensor studies demonstrated that PP1 bound to both Phosphorylated and dephosphorylated I-1 and suggested that distinct elements of I-1 structure accounted for PP1 binding and inhibition. Our data point to multiple interactions between the I-1 functional domain. and the PP1 catalytic subunit that define this phosphoprotein as a physiological regulator of the type-1 protein phosphatase.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号