首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We carried out a survey in 16 libraries of the University of Modena, Northern Italy, to assess the indoor exposure to volatile organic compounds (VOCs), including formaldehyde, and total dusts. Data were collected on the main structural characteristics of the buildings; indoor microclimate parameters, such as temperature, relative humidity and ventilation rate were measured and air samples taken inside and outside the libraries. The mean value of total dusts was 190 +/- 130 microg/m3 with a wide range of values. Formaldehyde was found in only ten out of 16 libraries and the indoor concentrations ranged from 1.70 to 67.8 microg/m3 with an average value of 32.7 +/- 23.9 microg/m3. On the whole, VOCs were present in all the libraries investigated with an average value was 433 +/- 267 microg/m3 (range 102-936 microg/m3). No correlation was found among VOCs, formaldehyde and total dusts nor was a significant association observed with microclimatic parameters or the structural characteristics of the buildings. The general situation found in this study suggests no major problems related to indoor pollution. However, some of the pollutants investigated such as total dust and total VOCs deserve further investigation. It is important to identify the possible sources of contaminants and to define the relationship between indoor and outdoor levels of pollutants more accurately, taking into account the effects of air recycling due to natural ventilation systems.  相似文献   

2.
Mi YH  Norbäck D  Tao J  Mi YL  Ferm M 《Indoor air》2006,16(6):454-464
We investigated 10 naturally ventilated schools in Shanghai, in winter. Pupils (13-14 years) in 30 classes received a questionnaire, 1414 participated (99%). Classroom temperatures were 13-21 degrees C (mean 17 degrees C), relative air humidity was 36-82% (mean 56%). The air exchange rate was 2.9-29.4 ac/h (mean 9.1), because of window opening. Mean CO2 exceeded 1000 ppm in 45% of the classrooms. NO2 levels were 33-85 microg/m3 indoors, and 45-80 microg/m3 outdoors. Ozone were 1-9 microg/m3 indoors and 17-28 microg/m3 outdoors. In total, 8.9% had doctors' diagnosed asthma, 3.1% wheeze, 23.0% daytime breathlessness, 2.4% current asthma, and 2.3% asthma medication. Multiple logistic regression was applied. Observed indoor molds was associated with asthma attacks [odds ratio (OR) = 2.40: P < 0.05]. Indoor temperature was associated with daytime breathlessness (OR = 1.26 for 1 C; P < 0.001), and indoor CO2 with current asthma (OR = 1.18 for 100 ppm; P < 0.01) and asthma medication (OR = 1.15 for 100 ppm; P < 0.05). Indoor NO2 was associated with current asthma (OR = 1.51 for 10 microg/m3; P < 0.01) and asthma medication (OR = 1.45 for 10 microg/m3; P < 0.01). Outdoor NO2 was associated with current asthma (OR = 1.44 for 10 microg/m3; P < 0.05). Indoor and outdoor ozone was negatively associated with daytime breathlessness. In conclusion, asthma symptoms among pupils in Shanghai can be influenced by lack of ventilation and outdoor air pollution from traffic. Practical Implications Most urban schools in Asia are naturally ventilated buildings, often situated in areas with heavy ambient air pollution from industry or traffic. The classes are large, and window opening is the only way to remove indoor pollutants, but this results in increased exposure to outdoor air pollution. There is a clear need to improve the indoor environment in these schools. Building dampness and indoor mold growth should be avoided, and the concept of mechanical ventilation should be introduced. City planning aiming to situate new schools away from roads with heavy traffic should be considered.  相似文献   

3.
Fine particle number concentration (D(p)>10 nm, cm(-3)), mass concentrations (approximation of PM(2.5), microg m(-3)) and indoor/outdoor number concentration ratio (I/O) measurements have been conducted for the first time in 11 urban households in India, 2002. The results indicate remarkable high indoor number and mass concentrations and I/O number concentration ratios caused by cooking. Besides cooking stoves that used liquefied petroleum gas (LPG) or kerosene as the main fuel, high indoor concentrations can be explained by poor ventilation systems. Particle number concentrations of more than 300,000 cm(-3) and mass concentrations of more than 1000 microg m(-3) were detected in some cases. When the number and mass concentrations during cooking times were statistically compared, a correlation coefficient r>0.50 was observed in 63% of the households. Some households used other fuels like wood and dung cakes along with the main fuel, but also other living activities influenced the concentrations. In some areas, outdoor combustion processes had a negative impact on indoor air quality. The maximum concentrations observed in most cases were due to indoor combustion sources. Reduction of exposure risk and health effects caused by poor indoor air in urban Indian households is possible by improving indoor ventilation and reducing penetration of outdoor particles.  相似文献   

4.
Concentrations of 38 organic air pollutants including aromatic hydrocarbons (AHCs), carbonyl compounds (CCs), volatile organic halogenated compounds (VOHCs), and organophosphorus compounds (OPCs) were measured in indoor and outdoor air in an industrial city, Shimizu, Shizuoka Prefecture, Japan. Levels of pollutants tended to be higher indoors than outdoors in both summer and winter except for benzene, carbon tetrachloride, trichloroethylene, tetrachloroethylene, and dichlorvos (DDVP). This trend was especially pronounced for CCs such as formaldehyde and acetaldehyde. For the organic air pollutants, the concentrations of AHCs and VOHCs substantially increased in winter, but not those of CCs and OPCs; the trends were similar for both indoors and outdoors. We investigated possible indoor sources of pollutants statistically. Multiple regression analysis of corresponding indoor and outdoor concentrations and the responses to our questionnaire showed that indoor concentrations of certain AHCs were significantly affected by their outdoor concentrations and cigarette smoking. For formaldehyde, indoor concentrations were significantly affected by house age and the presence of carpet or pets. For p-dichlorobenzene (pDCB), the concentrations in bedroom trended to be higher than those in other indoors and outdoors, suggested that mothballs for clothes present in bedrooms are the principal indoor source of pDCB. We compared indoor and outdoor pollutant concentrations to acceptable risk limits for 11 organic air pollutants. In indoors without smoking samples, the geometric mean concentrations of benzene, formaldehyde, acetaldehyde, carbon tetrachloride, pDCB, and DDVP exceeded the equivalent concentration representing the upper bound of one-in-one-hundred-thousand (1x10(-5)) excess risk over a lifetime of exposure.  相似文献   

5.
Indoor and outdoor BTX levels in German cities   总被引:4,自引:0,他引:4  
On the basis of the ongoing study INGA (INdoor exposure and Genetics in Asthma), Germany's most detailed and standardized epidemiological study on indoor exposure to both allergens in house dust and volatile compounds in the air of the home environment has been performed. The purpose of this paper is to describe the spatial and seasonal variability of indoor and outdoor BTX (Benzene, toluene, ethyl benzene, ortho-xylene, meta- and para-xylene) concentrations for the study period from June 1995 to November 1996. Within this framework, air concentrations of volatile organic compounds (BTX) were measured in 204 households in Erfurt (Eastern Germany) and 201 households in Hamburg (Western Germany). BTX sampling was conducted over one week using OVM 3500 passive diffusion sampling devices in the indoor (living room and bedroom) and outdoor environment (outside the window of the living room). Indoor and outdoor median BTX concentrations in Erfurt were slightly, but significantly higher than those in Hamburg. This gap was most pronounced in the levels of indoor toluene (37.3 microg/m3 for Erfurt and 20.5 microg/m3 for Hamburg, P < 0.0001). In both cities, winter indoor and outdoor concentrations for the five compounds exceeded the summer values. Outdoor concentrations of ethyl benzene and ortho-xylene were very low (50% < L.D.). In general, the indoor BTX air concentrations were significantly higher than the outdoor concentra- tions, the lowest I/O ratios were found in the case of benzene. Living room and bedroom values for the five compounds were highly correlated (Spearman coefficient 0.5-0.9). Despite the better insulation of the homes in West Germany, no indication for the expected higher indoor concentrations of BTX in the West could be found. The strong and yet undiscovered indoor source for toluene in East Germany might lead to a further increase in the indoor air load in those homes in the East, which undergo renovations which will lead to improved insulation.  相似文献   

6.
A study was performed to characterize the concentration of dozens of volatile organic compounds (VOCs) at 10 locations within a single large building and track these concentrations over a 2-year period. The study was performed at a shopping center (strip mall) in New Jersey. A total of 130 indoor air samples were collected from 10 retail stores within the shopping center and analyzed for 60 VOCs by US EPA Method TO-15. Indoor concentrations of up to 55,100 microg/m(3) were measured for individual VOCs. The indoor/outdoor ratio (I/O) was as high as 1500 for acetone and exceeded 100 at times for various compounds, indicating that significant indoor air sources were present. A large degree of spatial variability was observed between stores within the building, with concentrations varying by three to four orders of magnitude for some compounds. The spatial variability was dependent on the proximity of the sampling locations to the indoor sources. A large degree of temporal variability also was observed for compounds emitted from indoor sources, but the temporal variability generally did not exceed two standard deviations (sigma). For compounds not emitted from indoor sources at significant rates, both the spatial and temporal variability tended to range within an order of magnitude at each location. PRACTICAL IMPLICATIONS: Many cross-sectional studies have been published where the levels of volatile organic compounds (VOCs) were measured in indoor air at one or two locations for houses or offices. This study provides longitudinal data for a commercial retail building and also addresses spatial variability within the building. The data suggest that spatial and temporal variability are important considerations for compounds emitted from indoor sources. Elevated concentrations were found in retail spaces with no apparent emission sources due to their proximity to other retail spaces with emission sources.  相似文献   

7.
Several studies among adult populations showed that an array of outdoor and indoor sources of particles emissions contributed to personal exposures to atmospheric particles, with tobacco smoke playing a prominent role (J. Expo. Anal. Environ. Epidemiol. 6 (1996) 57, Environ. Int. 24 (1998) 405, Arch. Environ. Health 54 (1999) 95). The Vesta study was carried out to assess the role of exposure to traffic emissions in the development of childhood asthma. In this paper, we present data on 68 children aged 8-14 years, living in the metropolitan areas of Paris (n = 30), Grenoble (n = 15) and Toulouse (n = 23), France, who continuously carried, over 48 h, a rucksack that contained an active PM2.5 sampler. Data about home indoor sources were collected by questionnaires. In parallel, daily concentrations of PM10 in ambient air were monitored by local air quality networks. The contribution of indoor and outdoor factors to personal exposures was assessed using multiple linear regression models. Average personal exposure across all children was 23.7 microg/m3 (S.D. = 19.0 microg/m3), with local means ranging from 18.2 to 29.4 microg/m3. The final model explains 36% of the total between-subjects variance, with environmental tobacco smoke contributing for more than a third to this variability; presence of pets at home, proximity of the home to urban traffic emissions, and concomitant PM10 ambient air concentrations were the other main determinants of personal exposure.  相似文献   

8.
An exposure study of children (aged 10-12 years) living in Santiago, Chile, was conducted. Personal, indoor and outdoor fine and inhalable particulate matter (< 2.5 .m in diameter, PM2.5 and < 10 microm in diameter, PM10, respectively), and nitrogen dioxide (NO2) were measured during pilot (N = 8) and main (N = 20) studies, which were conducted during the winters of 1998 and 1999, respectively. For the main study, personal, indoor and outdoor 24-h samples were collected for five consecutive days. Similar mean personal, indoor and outdoor PM2.5 concentrations (69.5, 68.5 and 68.1 microg/m3, respectively) were found. However, for coarse particles (calculated as the difference between measured PM10 and PM2.5, PM2.5-10), indoor and outdoor levels (35.4 and 47.4 microg/m3) were lower than their corresponding personal exposures (76.3 microg/m3). Indoor and outdoor NO2 concentrations were comparable (35.8 and 36.9 ppb) and higher than personal exposures (25.9 ppb). Very low ambient indoor and personal O3 levels were found, which were mostly below the method's limit of detection (LOD). Outdoor particles contributed significantly to indoor concentrations, with effective penetration efficiencies of 0.61 and 0.30 for PM2.5 and PM2.5-10, respectively. Personal exposures were strongly associated with indoor and outdoor concentrations for PM2.5, but weakly associated for PM2.5-10. For NO2, weak associations were obtained for indoor-outdoor and personal-outdoor relationships. This is probably a result of the presence of gas cooking stoves in all the homes. Median I/O, P/I and P/O ratios for PM2.5 were close to unity, and for NO2 they ranged between 0.64 and 0.95. These ratios were probably due to high ambient PM2.5 and NO2 levels in Santiago, which diminished the relative contribution of indoor sources and subjects' activities to indoor and personal PM2.5 and NO2 levels.  相似文献   

9.
Lam KS  Chan FS  Fung WY  Lui BS  Lau LW 《Indoor air》2006,16(2):86-97
A study was carried out to investigate the feasibility of achieving ultra low respirable suspended particulates (RSP) in commercial offices without major modification of existing ventilation systems by enhancing the particulates removal efficiency of existing central ventilation systems. Four types of filters which include pre-filters, cartridge filters, bag filters and high efficiency particulates air (HEPA) filters were tested in a commercial building in Causeway Bay. The results show that an RSP objective of <20 microg/m3 could be met by removing RSP from both the return air and outdoor air supply simultaneously. This level of performance is classed as 'excellent' by the Hong Kong Government, Environmental Protection Department. Filters with efficiency that exceed 80% placed both in the return air and outdoor air were sufficient to meet the objective. It is not necessary to install HEPA filters to achieve the 'excellent' class. The outdoor air filter has great influence on the steady state indoor RSP concentration while the effective cleaning rate is governed by the return air filter. Higher efficiency filters increased the static drop but the volume flow of the air fan was not affected significantly. The additional cost incurred was <5% of the existing operation cost. PRACTICAL IMPLICATIONS: This paper reports a field study of RSP control for an indoor office environment. The results are directly applicable to building service engineering in the design of ventilation systems using air-handling units. Field observations indicated that indoor RSP in an office environment could be suppressed below 20 microg/m3 within 1 h by the simultaneous filtration of outdoor air and return air. Outdoor air filtration has a great influence on the steady state indoor concentration and return air filtration governs the cleaning rate. It is believed that the results of this study could be extended to the cleaning of other indoor pollutants such as volatile organic compounds.  相似文献   

10.
It is suspected that persons who work in indoor environments near busy roadways are exposed to elevated levels of air pollutants during working hours. This study evaluated the potential exposure and source contribution associated with traffic-related air pollution for workers (polishers and repairmen) in shoe stalls from each of 32 districts during working hours in Seoul, Korea. The shoe stalls have been located at very close distances to the busy roadways. In this study, shoe stall workers could be exposed to high levels of respirable suspended particulate (RSP), nitrogen dioxide (NO(2)) and volatile organic compounds (VOCs) from outdoor sources such as traffic exhaust, as well as indoor sources in the shoe stalls such as dust on the shoes, portable gas ranges, organic solvents, adhesives and shoe polish. Compounds of particular note included indoor mean concentrations of benzene, toluene, m/p-xylene and o-xylene were 0.732, 6.777, 4.080 and 1.302 mg/m(3), respectively, in all shoe stalls. Mean indoor/outdoor ratios for toluene and m/p-xylene concentrations were 54.52 and 20.84, respectively. The contribution of vehicle exhaust emissions to indoor air quality of shoe stalls was identified by means of correlating the relationships between simultaneously measured air pollutant concentrations indoors and outdoors. Unlike RSP and NO(2), indoor VOCs concentrations of shoe stalls mainly originated from indoor sources vs. outdoor sources.  相似文献   

11.
Little information is available about air quality in early childhood education (ECE) facilities. We collected single‐day air samples in 2010–2011 from 40 ECE facilities serving children ≤6 years old in California and applied new methods to evaluate cancer risk in young children. Formaldehyde and acetaldehyde were detected in 100% of samples. The median (max) indoor formaldehyde and acetaldehyde levels (μg/m3) were 17.8 (48.8) and 7.5 (23.3), respectively, and were comparable to other California schools and homes. Formaldehyde and acetaldehyde concentrations were inversely associated with air exchange rates (Pearson r = ?0.54 and ?0.63, respectively; P < 0.001). The buildings and furnishings were generally >5 years old, suggesting other indoor sources. Formaldehyde levels exceeded California 8‐h and chronic Reference Exposure Levels (both 9 μg/m3) for non‐cancer effects in 87.5% of facilities. Acetaldehyde levels exceeded the U.S. EPA Reference Concentration in 30% of facilities. If reflective of long‐term averages, estimated exposures would exceed age‐adjusted ‘safe harbor levels’ based on California's Proposition 65 guidelines (10?5 lifetime cancer risk). Additional research is needed to identify sources of formaldehyde and acetaldehyde and strategies to reduce indoor air levels. The impact of recent California and proposed U.S. EPA regulations to reduce formaldehyde levels in future construction should be assessed.  相似文献   

12.
Here we report indoor and outdoor concentrations of NO2 for Erfurt and Hamburg and assess the contribution of the most important indoor sources (e.g. the presence of gas cooking ranges, smoking) and outdoor sources (traffic exhaust emissions). We examined the relative contribution of the different sources of NO2 to the total indoor NO2 levels in Erfurt and Hamburg. NO2 indoor concentrations in Hamburg were slightly higher than those in Erfurt (i.e. living room: 15 microg m(-3) for Erfurt and 17 microg m(-3) for Hamburg). A linear regression model including the variables, place of residence, season and outdoor NO2 levels, location of the home within the city, housing and occupant characteristics accounted for 38% of the NO2 variance. The most important predictors of indoor NO2 concentrations were gas in cooking followed by other characteristics, such as ventilation or outdoor NO2 level. Residences in which gas was used for cooking, or in which occupants smoked, had substantially higher indoor NO2 concentrations (41 or 18% increase, respectively). An increase in the outdoor NO2 concentration from the 25th to the 75th-percentile (17 microg m(-3)) was associated with a 33% increase in the living room NO2 concentration. Multiple regression analysis for both cities separately illustrated that use of gas for cooking was the major indoor source of NO2. This variable caused a similar increase in the indoor NO2 levels in each city (43% in Erfurt and 47% in Hamburg). However, outdoor sources of NO2 (motor vehicle traffic) contributed more to indoor NO2 levels in Hamburg than in Erfurt.  相似文献   

13.
Seasonal and diurnal variations of carbonyl compounds were investigated at two sampling sites (Liwan and Wushan) in the ambient air of Guangzhou, China. Air samples were collected during 2005 from January to November, and carbonyl compounds were analyzed with HPLC. The results show that carbonyls exhibit distinct seasonal variation. The total concentrations of 21 carbonyls detected ranged from 2.64 to 103.6 μg m3 at Liwan and from 5.46 to 89.9 μg m3 at Wushan, respectively. The average total concentrations of carbonyls at both Liwan and Wushan decreased in order of summer>spring>autumn>winter. Formaldehyde, acetaldehyde, and acetone were the most abundant carbonyl compounds, which accounted for more than 60% of the total concentrations of carbonyls. The mean concentration ratios of summer/winter were all > 1.0 for the total concentrations and the individual carbonyl compound. The diurnal variation of carbonyls was not distinct in this study. The average concentration ratios of formaldehyde/acetaldehyde (C1/C2) varied from 0.71 to 1.32 and 0.65 to 1.14 at Liwan and Wushan, respectively, and the average concentration ratios of acetaldehyde/propionaldehyde (C2/C3) varied from 5.42 to 7.70 and 5.02 to 13.9 in Liwan and Wushan, respectively. Regarding photochemical reactivity of carbonyls and the ozone production, acetaldehyde, butyraldehyde, formaldehyde, and valeraldehyde account for 75-90% to the total propene-equivalent concentrations, while formaldehyde, acetaldehyde, valeraldehyde, butyraldehyde, and propionaldehyde contribute 89-96% to the total ozone formation potentials (ranging from 105 to 274 μg m-3). The ozone formation potentials in summer were higher by 1-2 times than those in the other seasons.  相似文献   

14.
Ultraviolet photocatalytic oxidation (UVPCO) systems for removal of volatile organic compounds (VOCs) from air are being considered for use in office buildings. Here, we report an experimental evaluation of a UVPCO device with tungsten oxide modified titanium dioxide (TiO2) as the photocatalyst. The device was challenged with complex VOC mixtures. One mixture contained 27 VOCs characteristic of office buildings and another comprised 10 VOCs emitted by cleaning products, in both cases at realistic concentrations (low ppb range). VOC conversion efficiencies varied widely, usually exceeded 20%, and were as high as approximately 80% at about 0.03 s residence time. Conversion efficiency generally diminished with increased airflow rate, and followed the order: alcohols and glycol ethers > aldehydes, ketones, and terpene hydrocarbons > aromatic and alkane hydrocarbons > halogenated aliphatic hydrocarbons. Conversion efficiencies correlated with the Henry's law constant more closely than with other physicochemical parameters. An empirical model based on the Henry's law constant and the gas-phase reaction rate with hydroxyl radical provided reasonable estimates of pseudo-first order photocatalytic reaction rates. Formaldehyde, acetaldehyde, acetone, formic acid and acetic acid were produced by the device due to incomplete mineralization of common VOCs. Formaldehyde outlet/inlet concentration ratios were in the range 1.9-7.2. PRACTICAL IMPLICATIONS: Implementation of air cleaning technologies for both VOCs and particles in office buildings may improve indoor air quality, or enable indoor air quality levels to be maintained with reduced outdoor air supply and concomitant energy savings. One promising air cleaning technology is ultraviolet photocatalytic oxidation (UVPCO) air cleaning. For the prototype device evaluated here with realistic mixtures of VOCs, conversion efficiencies typically exceeded the minimum required to counteract predicted VOC concentration increases from a 50% reduction in ventilation. However, the device resulted in the net generation of formaldehyde and acetaldehyde from the partial oxidation of ubiquitous VOCs. Further development of the technology is needed to eliminate these hazardous air pollutants before such a UVPCO device can be deployed in buildings.  相似文献   

15.
Mold specific quantitative PCR (MSQPCR) was used to measure the concentrations of the 36 mold species in indoor and outdoor air samples that were taken simultaneously for 48 h in and around 17 homes in Cincinnati, Ohio. The total spore concentrations of 353 per m(3) of indoor air and 827 per m(3) of outdoor air samples were significantly different (por=0.5). These results suggest that interpretation of the meaning of short-term (<48 h) mold measurements in indoor and outdoor air samples must be made with caution.  相似文献   

16.
To characterize indoor air quality at the markets in Hong Kong, three non-air-conditioned and two air-conditioned markets were selected for this study. The indoor air pollutants measured included PM(10) (particulate matters with aerodynamic diameter less than 10 microm), total bacteria count (TBC), carbon monoxide (CO), nitric oxide (NO), nitrogen dioxide (NO(2)) and sulfur dioxide (SO(2)). The indoor and outdoor concentrations of these target air pollutants at these markets were measured and compared. The effects of air conditioning, temperature/relative humidity variation and different stalls on the indoor air quality were also investigated. The results indicated that all of the average indoor concentrations of PM(10), TBC, CO and NO(2) at the markets were below the Hong Kong Indoor Air Quality Objectives (HKIAQO) standards with a few exceptions for PM(10) and TBC. The elevated PM(10) concentrations at Hung Hom, Ngau Tau Kok and Wan Chai markets were probably due to the air filtration of outdoor airborne particulates emitted from vehicular exhaust, whereas high concentrations of airborne bacteria at Sai Ying Pun and Tin Shing markets were linked to the use of air conditioning. Correlation analysis demonstrated that indoor bacteria concentrations were correlated with temperature and relative humidity. The operation of air conditioning did not significantly reduce the levels of air pollutants at the markets. However, the higher indoor/outdoor ratios demonstrated that the operation of air conditioning had influence on the levels of bacteria at the markets. It was found that average PM(10) concentration at poultry stalls was higher than the HKIAQO standard of 180 microg/m(3), and was over two times that measured at vegetable, fish and meat stalls. Furthermore, the concentration of airborne bacteria at the poultry stalls was as high as 1031 CFU/m(3), which was above the HKIAQO standard of 1000 CFU/m(3). The bacteria levels at other three stalls were all below the HKIAQO standard. Statistical analysis indicated that there were no significant differences among the four stalls for CO, NO(x) and SO(2).  相似文献   

17.
Occupational exposure to trihalomethanes in indoor swimming pools   总被引:3,自引:0,他引:3  
The study evaluated occupational exposure to trihalomethanes (THMs) in indoor swimming pools. Thirty-two subjects, representing the whole workforce employed in the five public indoor swimming pools in the city of Modena (Northern Italy) were enrolled. Both environmental and biological monitoring of THMs exposure were performed. Environmental concentrations of THMs in different areas inside the swimming pools (at the poolside, in the reception area and in the engine-room) were measured as external exposure index, while individual exposure of swimming pool employees was estimated by THMs concentration in alveolar air. The levels of THMs observed in swimming pool water ranged from 17.8 to 70.8 microg/l; the mean levels of THMs in ambient air were 25.6+/-24.5 microg/m3 in the engine room, 26.1+/-24.3 microg/m3 in the reception area and 58.0+/-22.1 microg/m3 at the poolside. Among THMs, only chloroform and bromodichloromethane were always measured in ambient air, while dibromochloromethane was detected in ambient air rarely and bromoform only once. Biological monitoring results showed a THMs mean value of 20.9+/-15.6 microg/m3. Statistically significant differences were observed according to the main job activity: in pool attendants, THMs alveolar air were approximately double those observed in employees working in other areas of the swimming pools (25.1+/-16.5 microg/m3 vs. 14.8+/-12.3 microg/m3, P < 0.01). THMs in alveolar air samples were significantly correlated with THMs concentrations in ambient air (r = 0.57; P < 0.001). Indoor swimming pool employees are exposed to THMs at ambient air levels higher than the general population. The different environmental exposure inside the swimming pool can induce a different internal dose in exposed workers. The correlation found between ambient and alveolar air samples confirms that breath analysis is a good biological index of occupational exposure to these substances at low environmental levels.  相似文献   

18.
During the summer of 1989 and the winter 1989-1990, we initiated measurements of 1,1,1-trichloroethane concentrations in indoor, outdoor, and 'personal' air, in urban and rural sites. In the Piedmont region (North-Western Italy) we have carried out an atmospheric monitoring study: in the centre of Turin city (urban site), in Cuorgnè (rural site), and in Banchetta (remote site). First results confirm a higher winter contamination (11.67 vs. 2.79 micrograms/m3) and a higher contamination at the urban site, compared to rural and remote sites. Excluding Cuorgnè in the summer, all indoor/outdoor ratios are greater than 1 and, in all cases, the 'personal' air shows higher 1,1,1-trichloroethane levels than indoor and outdoor air. In Turin the relationships between winter and summer all show a higher winter contamination, while, in Cuorgnè no differences are proven.  相似文献   

19.
This study was performed to examine exposure to typical carcinogenic traffic air pollutants in the city center of an urban area. In all, 123 apartments and 74 nursery schools were analyzed with and without tobacco smoke interference and the households in two measuring periods. Simultaneously, the air outside 61 apartment windows as well as the average daily traffic volume were measured. Elemental carbon (EC), the marker for particulate diesel exhaust and respirable particulate matter (RPM) were determined. The thermographic EC analysis was conducted with and without prior solvent extraction of the soluble carbon fraction. Comparison of these two thermographic EC measurements clearly showed that method-related differences in the results, especially for indoor measurements, when high background loads of organic material were present (e.g. tobacco smoke), existed. Solvent extraction prior to EC determination was therefore appropriate. For the first winter measuring period, the EC concentration levels without solvent extraction in the indoor air were about 50% higher than those measured in the spring/summer period. In the second measuring period (i.e. spring/summer), the median EC concentrations after solvent extraction were 1.9 microg/m3 for smokers' apartments and 2.1 microg/m3 for non-smokers' apartments, with RPM concentrations of 57 and 27 microg/m3, respectively. Nursery schools showed high concentrations with median values of 53 microg/m3 for RPM and 2.9 microg/m3 for EC after solvent extraction. A significant correlation between the fine dust and EC concentrations (after solvent extraction) in the indoor and ambient air was determined. Outdoor EC values were also correlated with the average daily traffic volume. The EC ratios between indoor and ambient concentration showed a median of 0.8 (range: 0.3-4.2) in non-smoker households and 0.9 (range: 0.4-1.5) in smoker apartments. Furthermore, the EC/RPM ratio in indoor and ambient air was 0.01-0.15 (median 0.06) and 0.04-0.37 (median 0.09), respectively. PRACTICAL IMPLICATIONS: In the absence of indoor sources a significant correlation with regard to respirable particulate matter (RPM) and elemental carbon concentrations between the indoor and ambient air of apartments was observed. The high degree of certainty resulting from this correlation underscores the importance of ambient air concentrations for indoor air quality. In nursery schools we found higher concentrations of RPM. An explanation of these results could be the high number of occupants in the room, their activity and the cleaning intensity.  相似文献   

20.
Overexposure to manganese (Mn) causes neurotoxicity (a Parkinson-like syndrome) or psychiatric damage ("manganese madness"). Several studies have shown alterations to motor and neural behavior associated with exposure to Mn in the workplace. However, there are few studies on the effects of environmental exposure of whole populations. We studied the risk of motor alterations in people living in a mining district in Mexico. We studied 288 individual people (168 women and 120 men) from eight communities at various distances from manganese extraction or processing facilities in the district of Molango. We measured manganese concentrations in airborne particles, water, soil and crops and evaluated the possible routes of Mn exposure. We also took samples of people's blood and determined their concentrations of Mn and lead (Pb). We used "Esquema de Diagnóstico Neuropsicológico" Ardila and Ostrosky-Solís's neuropsychological battery to evaluate motor functions. Concentrations of Mn in drinking water and maize grain were less than detection limits at most sampling sites. Manganese extractable by DTPA in soils ranged between 6 and 280 mg kg(-1) and means were largest close to Mn extraction or processing facilities. Air Mn concentration ranged between 0.003 and 5.86 microg/m(3); the mean value was 0.42 microg/m(3) and median was 0.10 microg/m(3), the average value (geometric mean) resulted to be 0.13 microg/m(3). Mean blood manganese concentration was 10.16 microg/l, and geometric mean 9.44 microg/l, ranged between 5.0 and 31.0 mcrog/l. We found no association between concentrations of Mn in blood and motor tests. There was a statistically significant association between Mn concentrations in air and motor tests that assessed the coordination of two movements (OR 3.69; 95% CI 0.9, 15.13) and position changes in hand movements (OR 3.09; CI 95% 1.07, 8.92). An association with tests evaluating conflictive reactions (task that explores verbal regulations of movements) was also found (OR 2.30; CI 95% 1.00, 5.28). It seems from our results that people living close to the manganese mines and processing plants suffer from an incipient motor deficit, as a result of their inhaling manganese-rich dust.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号