首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
A mathematical model is obtained for the process of cooling with formation of a planar film. The solution obtained is verified experimentally.Notation mean axial velocity gradient - vx current axial velocity - vo initial polymer velocity - v1 sampling velocity - K draw ratio - deformation rate tensor - x, y, z spatial coordinates - X, Y dimensionless coordinates - L() differential operator - T temperature - To initial temperature - Tc temperature of surrounding medium - dimensionless temperature - dimensionless temperature averaged over film thickness - thermal-diffusivity coefficient - 2o initial film thickness - thermal conductivity - heat-transfer coefficient - f(X) distance function - Bi Biot criterion, Bio, Biot criterion calculated for initial film thickness - Gz* modified Graetz criterion - V dimensionless velocity - 1, 2, 3 heat-transfer coefficients produced by radiation, free convection, and forced convection - vc, c mean velocity and film half-thickness in formation zone - T1 calculated temperature value - T2 experimental temperature value - l formation zone length Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 37, No. 5, pp. 854–858, November, 1979.  相似文献   

2.
Summary For a solidly rotating viscous cylindrical liquid column of finite length the response to axial synchronous, counter- and one-sided excitation is determined for anchored contact lines at the disc-rim. For a rotating column additional responses of inertial waves (hyperbolic range) appear for < 2 0, while in the elliptic range < 2 0 the sloshing response occurs. The various responses for the free surface displacement have been numerically evaluated. Only in the one-sided exitation case all resonance peaks appear, while for synchronous excitation only the odd resonances and for counter-excitation only the even resonance peaks occur.Notation a radius of column - h length of liquid bridge - I n modified Bessel function - p liquid pressure - r, ,z cylindrical polar coordinates - t time - u, v, w velocity distribution - Weber number - z 0 excitation amplitude - liquid density - surface tension - surface tension parameter - Ohnesorge number - liquid surface displacement - kinematic viscosity - 0 rotational speed - dimensionless rotational speed - forcing frequency - dimensionless forcing frequency - dimensionless forcing frequency for non-viscous liquid - a= root of bi-cubic Eq.(33) - root of bi-cubic Eq.(33)  相似文献   

3.
Numerical and asymptotic solutions are developed to the equations governing large torsional, axisymmetric deformation of rubberlike shells of revolution. The shell equations include large-strain geometric and material nonlinearities, transverse shear deformation, transverse normal stress and strain, and torsion. Both analyses allow ready incorporation of different strain-energy density functions. In the asymptotic analysis, the interior solution corresponds to that of nonlinear membrane theory and contains a primary boundary layer. The edge-zone solution gives a secondary boundary layer that, for large strain, divides into a bending-twisting moment component and a torsional-membrane component. The boundary layer behavior is illustrated for a clamped neo-Hookean cylinder subjected to internal pressure and axial torque.List of symbols Latin symbols a General dependent variable - a (mn) Terms of the asymptotic expansion of a(x) - b Characteristic length - c Scalar curvature components in the normal direction - c , c , , c Cosine of , respectively - C Material constant with units of a Young's modulus - e i Deformed local orthonormal basis associated with (, s, n)(x 1, x 2, x 3) coordinates - Undeformed cylindrical coordinate basis - Intermediate coordinate basis - g Shear correction factor - H Horizontal stress resultants - l 1 Strain invariant - k Scalar curvature components - L Undeformed cylinder length - M Moment resultants - M r, M , M z Moment resultant components in the basis - N Membrane stress resultants - p Internal pressure - p H, p v Horizontal and vertical surface loads, respectively - p i Thickness-averaged surface tractions - Q Transverse shear stress resultants - , r Radial coordinate prior to, after deformation - R Undeformed cylinder radius - , s Meridional coordinate prior to, after deformation - s , s x, , s Sine of , respectively - , S Reference surface prior to, after deformation - S 1, S 2 Shear stress resultants parallel to the reference surface - S 3 Average transverse normal stress resultant - t Undformed shell thickness - T Axial torque - V Vertical stress resultants - w Two-dimensional strain-energy density function - w n Terms in expansion for w - W Three-dimensional strain-energy density function - x Undeformed axial coordinate in cylinder - , z Axial coordinate prior to, after deformation  相似文献   

4.
Ramkissoon  H. 《Acta Mechanica》1997,123(1-4):227-233
Summary Creeping axisymmetric slip flow past a spheroid whose shape deviates slightly from that of a sphere is investigated. An exact solution is obtained to the first order in the small parameter characterizing the deformation. As an application, the case of flow past an oblate spheroid is considered and the drag experienced by it is evaluated. Special well-known cases are deduced and some observations made.Notation A n, Bn, Cn, Dn, En, Fn, b2, d2 Constants - a, b radii of spheres - coefficient of sliding fraction - D drag - , m parameters characterizing the deformation of the sphere - c a(1+) - viscosity coefficient - - dimensionless coordinate - I n Gegenbauer function - P n Legendre function - Stream function - U stream velocity at infinity  相似文献   

5.
The critical magnetic fieldH c () of granular Al films has been measured as a function of the angle between the field direction and the plane of the film at temperatures nearT c0 .The film thicknessd is smaller than the temperature-dependent coherence length (T), the bulk electron mean free path1 is smaller than the BCS coherence length 0, and 1 d. The experimental data onH c () are well fitted by the Tinkham formula. However, the observed values ofH c/H care not always consistent with and increase with1/d. This fact suggests that the boundary scattering of electrons at the film surface enhancesH c () and that the enhancement ofH cis larger than that ofH c.On leave from Department of Physics, Faculty of Science, Kyushu University, Fukuoka, Japan.  相似文献   

6.
P. C. Dumir 《Acta Mechanica》1986,60(1-2):121-132
Summary An approximate analytical solution of the large deflection axisymmetric response of polar orthotropic thin truncated conical and spherical shallow caps is presented. Donnell type equations are employed. The deflection is approximated by a one term mode shape satisfying the boundary conditions. The Galerkin's method is used to get the governing equation for the deflection at the hole. Nonlinear free vibration response and the response under uniformly distributed static and step function loads are obtained. The effect of various parameters is investigated.Notations A, A * Inward and outward amplitudes - a, b, h Base radius, inner radius and thickness of the cap - D M h 3/[12(v 2 )] - E ,E Young's moduli - H *,H Apex height, dimensionless apex heght:H */h - N , Stress resultants - p 1/2 - q Uniformly distributed load - Q,Q0 Dimensionless load: , dimensionless step load - Q, Q 0 Dimensionless load: , step load - t, Time, dimensionless time: t - T A Ratio of nonlinear periodT for inward amplitudeA and the linear periodT L - w * Normal displacement at middle surface - w Dimensionless displacement:w */h - 1 Linear parameter of static response - Orthotropic Parameter:E /E - Mass density - 2,3 Quadratic and cubic nonlinearity parameters - b/a - v ,v Poisson's ratios - Dimensionless radius:r/a - *, Stress function, dimensionless stress function: - 0 * ,0 Linnear frequency, dimensionless frequency: With 7 Figures  相似文献   

7.
The article is concerned with the study of the effect of E. S. Asmolov's corrections to Saffman's lift force for the wall vicinity and a nonzero ratio of Reynolds numbers. It is shown in what way these corrections change the particle paths in a Couette layer and the conditions of deposition.Notation x=X/D, y=Y/D dimensionless longitudinal and transverse coordinates - u=U p /U , =V p /U dimensionless projections of particle velocity on the longitudinal and transverse axes - =tU /D dimensionless time - U 2/(18D) Stokes number - = g / p , coefficient of the gas kinematic viscosity - particle diameter - /D - g , p densities of the gas and particle material - du/d - dv/d - P s Saffman's force - C coefficient in the formula for Saffman's force - yRe d 1/2 - A v r Re d 1/2 - 3.08 - Re V r / - Re k 2/)U g /Y - A Re/Re k 1/2 - Re d U D/ - V r ((U g –U p )2+V p 2 )1/2 Indices g refers to gas parameters - p refers to the parameters of particles - 0 at the time momentt=0 - S Saffman's force - k Reynolds number based on the velocity gradient - based on velocity - r relative velocity - x projection on thex axis  相似文献   

8.
Summary Thermodynamic theory is used to develop single integral constitutive relations for the nonlinear thermoviscoelastic response to arbitrary stress and temperature histories; the thermomechanically coupled energy equation is also obtained. The thermorheologically simple material, modified superposition and the isotropic stress power law are discussed in detail. A modified Fourier heat conduction law is employed to ensure that the propagation of thermal disturbances takes place at a finite velocity. Using the nonlinear thermoviscoelastic stress power law along with the linearized energy equation and modified Fourier law, one-dimensional wave front solutions are obtained.
Zur Beschreibung des nichtlinearen Verhaltens thermoviskoelastischer Stoffe durch einfache Integrale mit Anwendung auf eindimensionale Wellenausbreitung
Zusammenfassung Mit Hilfe der Thermodynamik werden einfache Integrale enthaltende Werkstoffbeziehungen für das nichtlineare thermoviskoelastische Verhalten unter beliebigen Spannungs- und Temperaturverläufen entwickelt und die thermomechanisch gekoppelte Energiegleichung wird angegeben. Im Detail werden der thermodynamisch-einfache Werkstoff, die modifizierte Überlagerung und das isotrope Spannungs-Potenzgesetz diskutiert. Damit thermische Störungen sich mit endlicher Geschwindigkeit ausbreiten, wird ein modifiziertes Fouriersches Wärmeleitgesetz verwendet. Unter Verwendung des nichtlinearen thermoviskoelastischen Spannungs-Potenzgesetzes, der linearisierten Energiegleichung und des modifizierten Wärmeleitgesetzes werden Lösungen der eindimensionalen Wellenfrontausbreitung erhalten.

Notation C ijkl linear elastic compliance, Equation (29) - C s ,C ts ,m s ,m tk ,v s ,v tk inelastic material constant, Equation (38) - C specific heat at constant strain, Equation (57) - C specific heat at constant stress, Equation (29) - E Young's modulus, Equation (34) - F kl tensor functions of stress, Equation (28) - f mn (1) ,f kl (2) tensor functions of the stress and temperature, Equation (8) - f[(t)] monotonically increasing function of stress, Equation (1) - G Gibbs free energy, Equation (2) - initial Gibbs free energy, Equation (29) - Gibbs free energy due to the instantaneous elastic response of the material, Equation (7) - Gibbs free energy due to memory, Equation (7) - i temperature gradient , Equation (20) - H Helmholtz free energy, Equation (2) - J 1 first invariant of the stress tensor, Equation (38) - I 1 second invariant of the stress deviator tensor, Equation (38) - J(t) creep compliance function, Equation (1) - J ijkl (t) temperature independent material property, Equation (8) - J s steady creep compliance function, Equation (38) - J tk transient creep compliance function, Equation (38) - J I shear creep compliance function, Equation (34) - J II bulk creep compliance function, Equation (34) - K isotropic thermal conductivity, Equation (42a) - K ij thermal conductivity tensor, Equation (3) - M number of nonlinear memory integrals, Equation (36) - N=M+2 number of components of strain, Equation (49) - n steady creep power, Equation (45) - Q one-dimensional heat flux vector, Equation (48 b) - Q i heat flux vector, Equation (3) - q i transient creep powers, Equation (46) - S entropy per unit mass, Equation (4) - initial entropy density, Equation (29) - s ij stress deviator tensor - T temperature - T 0 constant reference temperature, Equation (4) - t time - V 1,V 2 wave speeds - uncoupled elastic mechanical wave speed - uncoupled thermal speed - x i space coordinate - coefficient of thermal expansion, Equation (34) - ij thermal strain coefficient, Equation (24) - , positive quantities in base characteristics equation, Equation (55) - one-dimensional strain - ij strain tensor - 1 linear elastic strain, Equation (49) - 2 steady creep strain, Equation (49) - 1,i=3,...,N transient creep strains, Equation (49) - T thermal strain, Equation (49) - initial strain, Equation (29) - reciprocal of the isotropic conductivity, Equation (41) - reciprocal of the conductivity - temperature difference betweenT and a constant reference temperature, Equation (3) - 0 initial temperature discontinuity, Equation (73) - ,µ i material constants, Equation (45), (46) - 1, 2, 3 functions of the three invariants of the stress tensor, Equation (35) - Lamé constants, Equation (57) - A rate of energy dissipation, Equation (13) - elastic Poisson's ratio, Equation (34) - reduced time, Equation (17) - mass density, Equation (2) - one-dimensional stress - ij stress tensor - relaxation time of heat conduction, Equation (3) - i retardation time in transient creep, Equation (39) - shift factor, Equation (37) - [ ] j ,j=1, 2 indicates a discontinuity across the leading and lagging wave fronts respectively - designates dependent variables in (x i , ) space This research was supported in part by the Office of Naval Research under Contract No. N00014-75-C-0302.  相似文献   

9.
Summary The response of a solidly rotating anchored finite liquid column consisting of frictionless liquid is subjected to axial harmonic excitation. The response of the free liquid surface elevation and velocity distribution has been determined analytically in the elliptic (>2 0) and hyperbolic frequency range (>2 0). For the liquid surface displacement the response has been evaluated numerically as a function of the forcing frequency/2 0. In addition the first natural stuck-edge frequency has been determined and compared with the slipping case.List of symbols a radius of liquid bridge - h length of liquid bridge - I 0,I 1 modified Besselfunctions - J 0,J 1 Besselfunctions - p liquid pressure - r, ,z cylindrical polar coordinates - t time - u, v, w velocity distribution in rotating liquid - Weber number - z0 axial excitation amplitude - elliptic case (>2 0) - hyperbolic case (>2 0) - liquid density - surface tension - liquid surface displacement - acceleration potential - 0 rotational speed - axial forcing frequency - natural frequency of rotating system - 0n natural frequency of harmonic axial response  相似文献   

10.
We considered the kinematics and dynamics of a vortex ring in an incompressible fluid in toroidal coordinates. We obtained the change in the pressure difference along the boundary between two flow regions in the case of a moving torus.Notation , , toroidal coordinates - (V ;V ;V ) velocity of a fluid particle and its projections in toroidal coordinates - g ,g ,g metric tensor components - the Jacobian of transition to curvilinear coordinates - V 0 velocity at the center of a vortex ring on its symmetry axis - x, y, z Cartesian coordinates - z, y, cylindrical coordinates - a distance from the axis of a torus (V=0) to its axis of symmetry (Oz) - angle between the Oy axis and the line that connects a fluid particle on the streamline =const, which represents a circle [16], with the center of this circle - U z,U y velocities in the cylindrical system of coordinates - 0 stream function of a stationary vortex ring - velocity circulation - U V 1, velocity of a rectilinear flow at infinity - 1 stream function of a rectilinear flow - = 0 + 1 superposition of two flows - n=k 4=V 1/V 0 velocity ratio coefficient - R radius of a vortical region - U velocity of fluid particles at the boundary in polar coordinates (r, ) with the center at the coordinate origin (point 0) - fluid density - p 0,p pressure at infinity and at a certain point of flow - pressure difference Polotsk State University, Polotsk, Belarus. Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 68, No. 4, pp. 531–536, July–August, 1995.  相似文献   

11.
Summary We consider the free convection boundary layer flow induced by a heated vertical cylinder which is embedded in a fluid-saturated porous medium. The surface of the cylinder is maintained at a temperature whose value above the ambient temperature of the surrounding fluid varies as then th power of the distance from the leading edge. Asymptotic analyses and numerical calculations are presented for the governing nonsimilar boundary layer equations and it is shown that, whenn<1, the asymptotic flowfield far from the leading edge of the cylinder takes on a multiple-layer structure. However, forn>1, only a simple single layer is present far downstream, but a multiple layer structure exists close to the cylinder leading edge. We have shown that the fully numerical and asymptotic calculations are in stisfactory agreement, especially for exponentsn close to zero. Comparisons of the present numerical solutions obtained using the Keller-box method with previous numerical solutions using local methods are also given.List of symbols a radius - scaled streamfunctions - f 0,f 1,f 2 inner zone streamfunctions whenn<1 - leading order streamfunctions inn>1, 1 asymptotic solution - F 0,F 1 outer zone streamfunctions whenn<1 - G large parameter satisfyingG=X 2 lnG - g gravitational acceleration - K permeability of the porous medium - n exponent in prescribed temperature law - r radial co-ordinate - r rescaled radial co-ordinate - R Darcy-Rayleigh number - T temperature of convective fluid - T w temperature of cylinder at leading edge - T ambient temperature of fluid - u velocity in axial direction - v velocity in azimuthal direction - w velocity in radial direction - x axial co-ordinate - x escaled axial co-ordinate - X dimensionless axial co-ordinate - thermal diffusivity of the saturated medium - coefficient of thermal expansion - constant in the boundary conditions forF 0 - dimensionless radial co-ordinate - co-ordinate for the outer zone in then<1 solution - scaled radial co-ordinates - scaled fluid temperature - similarity variable for then=1 problem - nondimensionalisation constant (Eq. (9)) - viscosity of fluid - scaled axial co-ordinates - density of fluid - co-ordinate for the inner zone in then<1 solution - azimuthal co-ordinate - similarity variables for then>1 problem - streamfunction  相似文献   

12.
Summary The response of a solidly rotating liquid bridge consisting of inviscid liquid is determined for pitch excitation about its undisturbed center of mass. Free liquid surface displacement and velocity distribution has been determined in the elliptic (>20) and hyperbolic (<20) excitation frequency range.List of symbols a radius of liquid column - h length of column - I 1 modified Besselfunction of first kind and first order - J 1 Besselfunction of first kind and first order - r, ,z cylindrical coordinates - t time - u, v, w velocity distribution in radial-, circumferential-and axial direction resp. - mass density of liquid - free surface displacement - velocity potential - 0 rotational excitation angle - 0 velocity of spin - forcing frequency - 1n natural frequency - surface tension - acceleration potential - for elliptic range >20 - for hyperbolic range >20  相似文献   

13.
Experimental data of a high degree of accuracy are presented on the temperature-density parameters of Freon-13 on the saturation line in the density range of (0.08246–1.6061)·10 kg/m3.Notation T absolute temperature of phase transition from two-phase to one-phase state (or vice versa) - Tc critical temperature - , densities of liquid and vapor, respectively, on saturation line - c density at critical points - average density - =(Tc–T)/2 reduced temperature - parameter of order, equal to ' – c – b for the liquid phase and c + b – "for the vapor phase Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 37, No. 5, pp. 830–834, November, 1979.  相似文献   

14.
Ohne ZusammenfassungBezeichnungen L Bezugsgrößen für dimensionslose Koordinaten - L charakteristische Schalenabmessung - t Schalendicke - Schalenparameter - körperfeste, krummlinige, dimensionslose Koordinaten der Schalenmittelfläche - Dimensionslose Koordinate in Richtung der Schalennormalen - i, j,...=1,2,3 Indizierung des dreidimensionalen Euklidischen Raumes - ,,...=1,2 Indizierung des zweidimensionalen Riemannschen Raumes - (...), Partielle Differentiation nach der Koordinate - (...), Kovariante Differentiation für Tensorkomponenten des zweidimensionalen Raumes nach der Koordinate - (...)| Kovariante Differentiation für Tensorkomponenten des dreidimensionalen Raumes nach der Koordinate - Variationssymbol - a ,a 3 Basisvektoren der Schalenmittelfläche - V Verschiebungsvektor - U ,U 3 Verschiebungskomponenten des Schalenraumes - v ,w,w ,W Verschiebungskomponenten der Schalenmittelfläche - Verhältnis der Metriktensoren des Schalenraumes und der Schalenmittelfläche - ik Verzerrungstensor des Raumes - (, ), Symmetrische Verzerrungstensoren der Schalenmittelfläche - [, ] Antimetrischer Term des Verzerrungsmaßes - , Spannungstensor - n ,m ,q Tensorkomponenten der Schnittgrößenvektoren - p ,p,c Tensorielle Lastkomponenten  相似文献   

15.
After determining the values of the nonlocal moduli for longitudinal waves in an infinite space, Fourier transforms of the equations of axially symmetric longitudinal waves in an infinite circularly cylindrical rod are established and decoupled according to the Pochhammer procedure. Dispersion equation is obtained from the conditions of traction free surface of the rod, and compared with its classical counterpart. While the velocity of long waves coincides, as required, with that derived in the classical case, the velocity of short waves turns out to be about 36% less.Notation a interatomic spacing - a 1,a 2,a 3 coefficients defined by (2.12.5) - c wave phase velocity - d rod diameter - h, l defined by (2.15) - k wave number - overbar denotes Fourier transform - R rod radius - r, r vector of the point of observation and of generic point, respectively - u displacement in thex 1-direction - u, w displacements in ther- andz-direction, respectively - double Fourier transform ofu(r, z, t) - (r–r) Dirac delta function - , Lamé constants - , nonlocal moduli - Fourier transforms of 03BC; and - A wave length - mass density - 11 normal stress in thex 1-direction - rr , rz , zz stress components in polar coordinates,r, ,z - dilatation - , * defined by (2.20.2) - wave frequency - notation defined by (2.13.2) With 1 FigurePrepared with partial support of the University of Delaware.  相似文献   

16.
Summary The hypersonic small-disturbance theory is reexamined in this study. A systematic and rigorous approach is proposed to obtain the nonlinear asymptotic equation from the Taylor-Maccoll equation for hypersonic flow past a circular cone. Using this approach, consideration is made of a general asymptotic expansion of the unified supersonic-hypersonic similarity parameter together with the stretched coordinate. Moreover, the successive approximate solutions of the nonlinear hypersonic smalldisturbance equation are solved by iteration. Both of these approximations provide a closed-form solution, which is suitable for the analysis of various related flow problems. Besides the velocity components, the shock location and other thermodynamic properties are presented. Comparisons are also made of the zeroth-order with first-order approximations for shock location and pressure coefficient on the cone surface, respectively. The latter (including the nonlinear effects) demonstrates better correlation with exact solution than the zeroth-order approximation. This approach offers further insight into the fundamental features of hypersonic small-disturbance theory.Notation a speed of sound - H unified supersonic-hypersonic similarity parameter, - K hypersonic similarity parameter, M - M freestream Mach number - P pressure - T temperature - S entropy - u, v radial, polar velocities - V freestream velocity - shock angle - cone angle - density - density ratio, /() - ratio of specific heats - polar angle - stretched polar angle, / - (), (), () gage functions  相似文献   

17.
Zusammenfassung Messungen des Anwachsens von Längswirbeln in zeitlich anwachsenden Grenzschichten an konkav gekrümmten Wänden (Görtler-Taylor-Wirbel) ergaben drei deutlich getrennte Bereiche: Es traten zunächst Wirbel mit der Wellenläge 0,9 auf (=Grenzschichtdicke, =Höhe einer Zelle, die zwei gegensinnig drehende Wirbel enthält). Je nach Größe der mit der Verdrängungsdicke 1 der Grenzschicht gebildeten Reynolds-Zahl erschienen dann kurze Zeit später Wirbel mit 2,5, wenn war. Im Bereiche dagegen traten stattdessen bei den hier durchgeführten Versuchen immer Wirbel mit der Wellenlänge 6,5 auf. Bei werden die ersten Tollmien-Schlichting-Wellen mit der Wellenlänge TS 6· angefacht. In ihren wandnahen Bereichen der Wellentäler könnten sich dann die oben genannten Längswirbel der Wellenlänge 6,5· ausbilden, die die zwei-in eine dreidimensionale Störung allseits gleicher Größenordnung verwandeln können.
The development of longitudinal vortices in boundary layers growing with time along concave walls
Summary Measurements of the growth of longitudinal vortices in boundary layers growing with time along concave walls (Görtler-Taylor vortices) rendered three distinctly separated regions. First, vortices with a wave-length 0.9 appeared (-boundary layer thicness, =height of a cell containing two counterrotating vortices). Then, depending on the Reynolds number R a 1/v 1=displacement thickness), vortices with 2.5 appeared shortly afterwards, provided . In the region , however, the wave-length was 6.5. For the first Tollmien-Schlichting waves with TS 6 were excited. In the wave-throughs close to the wall the abovementioned longitudinal vortices with wave length 6.5 may then be formed. This might transform the two-dimensional into a three-dimensional flow of equal order of magnitude in all directions.

Zeichenerklärungen R a Innenradius - Re a Reynolds-Zahl gebildet mit dem InnenradiusR a - Reynolds-Zahl gebildet mit der Verdrängungsdicke 1 - kritische Taylor-Zahl - h Standhöhe der Flüssigkeit im Zylinder - t Zeit - z Anzahl - Steigungswinkel der Geraden - Grenzschichtdicke - 1 Verdrängungsdicke - Wellenlänge (enthält ein gegensinnig rotierendes Längswirbelpaar) - v kinematische Zähigkeit - Winkelgeschwindigkeit Indizes K Knickpunkt der Geradensteigung - L unterhalb des Knickpunktes der Geradensteigung - TS Tollmien-Schlichting - e Einsatz der Wirbelentstehung  相似文献   

18.
Summary For a finite solidly rotating cylindrical liquid column the damped natural axisymmetric frequencies have been determined. The liquid was considered incompressible and viscous. The cases of freely slipping edges and that of anchored edges have been treated. It was found that instability appears in a purely aperiodic root for the spinning liquid bridge. This is in contrast to the instability appearing in the damped oscillatory natural frequency of a nonspinning liquid column at . The spinning viscous liquid column exhibits the same instability as the frictionless liquid. It appears at for axisymmetric oscillations.List of symbols a radius of liquid column - I m modified Bessel function of first kind and orderm - s complex frequency ( ) - r, ,z polar cylindrical coordinates - p pressure - t time - u, v, w radial-, azimuthal- and axial velocities of liquid, respectively - Weber number - h height of liquid column - dynamic viscosity of liquid - v kinematic viscosity of liquid (v=/) - density of liquid - surface tension of liquid - r , rz shear stress - (r, z, t) circulation - (r, z, t) streamfunction - 0 angular velocity of liquid column about the axis of symmetry - (,t) free surface displacement  相似文献   

19.
Summary The tangent modulus tensor, denoted as , plays a central role in finite element simulation of nonlinear applications such as metalforming. Using Kronecker product notation, compact expressions for have been derived in Refs. [1]–[3] for hyperelastic materials with reference to the Lagrangian configuration. In the current investigation, the corresponding expression is derived for materials experiencing finite strain due to plastic flow, starting from yield and flow relations referred to the current configuration. Issues posed by the decomposition into elastic and plastic strains and by the objective stress flux are addressed. Associated and non-associated models are accommodated, as is plastic incompressibility. A constitutive inequality with uniqueness implications is formulated which extends the condition for stability in the small to finite strain. Modifications of are presented which accommodate kinematic hardening. As an illustration, is presented for finite torsion of a shaft, comprised of a steel described by a von Mises yield function with isotropic hardening.Notation B strain displacement matrix - C=F T F Green strain tensor - compliance matrix - D=(L+L T )/2 deformation rate tensor - D fourth order tangent modulus tensor - tangent modulus tensor (second order) - d VEC(D) - e VEC() - E Eulerian pseudostrain - F, F e ,F p Helmholtz free energy - F=x/X deformation gradient tensor - f consistent force vector - residual function - G strain displacement matrix - h history vector - h time interval - H function arising in tangent modulus tensor - I, I 9 identity tensor - i VEC(I) - k 0,k 1 parameters of yield function - K g geometric stiffness matrix - K T tangent stiffness matrix - k k kinematic hardening coefficient - J Jacobian matrix - L=v/x velocity gradient tensor - m unit normal vector to yield surface - M strain-displacement matrix - N shape function matrix - n unit normal vector to deformed surface - n 0 unit normal vector to undeformed surface - n unit normal vector to potential surface - r, R, R 0 radial coordinate - s VEC() - S deformed surface - S 0 undeformed surface - t time - t, t 0 traction - t VEC() - VEC( ) - t VEC() - t r reference stress interior to the yield surface - t t–t r - T kinematic hardening modulus matrix - u=x–X displacement vector - U permutation matrix - v=x/t particle velocity - V deformed volume - V 0 undeformed volume - X position vector of a given particle in the undeformed configuration - x(X,t) position vector in the deformed configuration - z, Z axial coordinate - vector of nodal displacements - =(F T F–I)/2 Lagrangian strain tensor - history parameter scalar - , azimuthal coordinate - elastic bulk modulus - flow rule coefficient - twisting rate coefficient - elastic shear modulus - iterate - Second Piola-Kirchhoff stress - Cauchy stress - Truesdell stress flux - deviatoric Cauchy stress - Y, Y yield function - residual function - plastic potential - X, Xe, Xp second order tangent modulus tensors in current configuration - X, Xe, Xp second order tangent modulus tensors in undeformed configuration - (.) variational operator - VEC(.) vectorization operator - TEN(.) Kronecker operator - tr(.) trace - Kronecker product  相似文献   

20.
The tensile creep of a series of aluminium-lithium-based alloys, two binary alloys containing precipitate, and the 2090 alloy containing and T1 precipitate, has been studied over a range of stresses at 150°C. In some cases the internal stress developed during creep has been determined using the strain transient dip test. The results have been compared with similar data previously obtained for the 8090 alloy containing and S precipitates. The solid solution alloy and the binary alloy containing shearable particles exhibited normal Class II behaviour, with the development of sub-grains and a stress dependence of the creep rate given by a single stress exponent,n, between 4 and 5 at all applied stresses. The alloys containing particles not easily sheared by dislocations, coarse , S and T1, exhibited similar stress dependencies of the creep rate at low stresses but exhibited large values ofn, between 18 and 35 at high stresses. The internal stress, i, in these alloys was found to be approximately constant at high stresses possibly due to partial shearing of the coarse , T1, and the S on sub-boundaries. The stress dependence of the minimum creep rate, , could be represented at all applied stresses, a, by , where (ai) is the effective stress driving dislocations during creep, andn is a single stress exponent of between 5 and 6 for all applied stresses. The internal stress, which increases with applied stress, at least at a low applied stress, arises from inhomogeneity of plastic deformation, due to hard sub-boundaries or hard particles which are Orowan looped. These two types of contribution to the internal stress are of similar magnitude in the alloys containing coarse and T1 but the majority of the internal stress in the 8090 alloy may arise as a result of the hardening of sub-boundaries by the S precipitate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号