首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 78 毫秒
1.
为提高多目标粒子群算法(MOPSO)的收敛性与解集多样性,提出一种基于侧步爬山策略的混合多目标粒子群算法(H-MOPSO).通过建立局部搜索与粒子群优化的混合模型,在该模型中后期引入基于侧步爬山策略的局部搜索,周期性代替粒子群搜索并优化混合参数,使粒子根据距离前沿的远近朝下降或非支配方向搜索,加快粒子群收敛并改善其分布.同时采用非均匀变异算子和线性递减的惯性权重策略,避免算法早熟.通过标准测试函数的对比实验表明,该算法整体上比MOPSO、NSGA-II和MOEA/D具有更好的多样性与收敛性.  相似文献   

2.
混合蛙跳算法(SFLA)是一种全新的群体智能优化算法。针对基本混合蛙跳算法局部搜索能力差,因而优化精度低、收敛速度慢的缺点,引入量子粒子群算法的搜索策略,提出了一种基于量子粒子群搜索策略的混合蛙跳算法(QPSO-SFLA)。通过对基准函数进行测试,实验结果表明改进的算法大大提高了算法的收敛速度,增强了算法的寻优能力。  相似文献   

3.
提出一种改进的粒子群优化算法--基于全局劣汰策略的混合粒子群优化算法(GTPSO).GTPSO在保持PSO算法快速收敛的基础上,以郭涛算法(GuoA)的寻优机制确保种群的多样性和算法的坚韧性.数值计算结果表明,对于高维(维数≥10)复杂非凸多峰函数的数值优化问题,GTPSO算法的计算结果均优于GuoA算法和粒子群优化算法.  相似文献   

4.
5.
通常的粒子群优化算法采取单一的学习策略,不利于搜索信息的有效保留,因此将改进的差分变异策略引入到粒子的速度更新中以增强算法的群体多样性;综合利用差分变异与扰动策略两种不同的产生新解的方式,提出了一种多策略交叉学习机制算法DPPSO(hybrid particle swarm optimization with differential and per-turbation)。每一个粒子通过引进的差分变异操作和扰动操作分别产生一个中间粒子,再选择较好的粒子作为当前粒子的新位置,从而实现所有粒子动态地选择更好的生成策略来更新自己的位置和速度,因此该交叉策略能够有效提高PSO算法的群体多样性和搜索路径的多样性,粒子可以获取更好的启发式信息,沿着不同的路径被引向更有潜力的搜索区域。实验结果表明了两种策略的有效性和互补性,DPPSO算法比其他三种算法有更好的综合表现,具有有效的全局收敛能力和准确定位能力。  相似文献   

6.
基于禁忌搜索的混合粒子群优化算法   总被引:1,自引:0,他引:1  
在粒子群优化算法中引入禁忌搜索思想从而增加粒子群的多样性,改进惯性权重,添加罚函数重新构造适应度函数.在此基础上提出一种基于禁忌搜索的混合粒子群优化算法(THPSO).通过6个标准测试函数实验,结果表明提出的算法比基本粒子群优化算法(PSO)具有更好的全局寻优能力、更快的收敛速度以及获得更高精度的解的能力.  相似文献   

7.
粒子群优化算法综述   总被引:4,自引:0,他引:4  
概括粒子位置、速度更新公式的修正,控制参数的变换和种群多样的维持等粒子群优化算法的改进技术,介绍具有量子行为、并行处理能力及解决多目标优化问题的新型粒子群优化算法,讨论粒子群优化算法和基他优化算法混合的基本思想.  相似文献   

8.
基于粒子群算法的混洗蛙跳算法   总被引:4,自引:1,他引:4  
基于模因进化的演化算法是一种模拟自然界生物进化或社会种群活动的随机搜索方法。本文介绍一种基于新的智能搜索算法——混洗蛙跳算法的改进演化算法。对SFLA算法和PSO算法的基本原理进行阐述,为了更好地改进SFLA算法局部搜索能力差、收敛速度降低,将粒子群优化算法(PSO)与混洗蛙跳算法(SFLA)相结合,提出一种改进的混洗蛙跳算法(SFLA),能够提高算法的局部搜索能力和稳定性。该算法比上述两种算法具有更好的性能,特别是对函数优化等问题计算效果更好。  相似文献   

9.
基于差分进化和粒子群优化算法的混合优化算法   总被引:3,自引:1,他引:2  
为了发挥差分进化和粒子群优化算法各自拥有的特点,并克服自身存在的问题,提出了一种混合优化算法(简称DPA).该算法首先利用差分进化的变异和选择算子产生新的群体,然后通过使用粒子群优化算法和交叉、选择算子进行局部搜索.在整个算法过程中,群体寻优范围先扩散再收缩,反复迭代渐进收敛.通过3个标准算例的测试表明,新的混合优化算法与差分进化和粒子群优化算法相比,具有收敛速度快、搜索能力强、鲁棒性好的特点.  相似文献   

10.
粒子群算法是一类基于群智能的优化搜索算法。该算法初期收敛很快,但后期易陷入局部最优点。为了提高粒子群算法的性能,将粒子群算法全局搜索的快速性和混沌算法的一定范围内的遍历性二者结合,提出一种基于混沌优化的混合粒子群算法。该算法首先用粒子群算法进行快速搜索,当出现早熟收敛时,对局部较优的部分粒子和全局极值采用混沌优化策略。对两个典型的测试函数进行仿真表明,该算法能够摆脱局部极值,得到全局最优。将其用于(N+M)系统费用模型求解,得到最优解,同样验证了该算法搜索效率、精度优于一般的粒子群算法,同时具有较好的收敛稳定性。  相似文献   

11.
针对基本混合蛙跳算法的缺陷, 提出了一种基于混沌优化策略的改进混合蛙跳算法(SFLA)。在青蛙更新策略中引入自适应扰动机制, 平衡了算法搜索深度, 并利用高斯变异算子代替随机更新操作, 提高了算法搜索速度; 在全局迭代中借鉴混沌优化策略思想, 以概率形式对最优个体进行优化, 避免了族群陷入局部最优, 并证明了改进算法以概率1收敛于全局最优解。最后用MATLAB对测试函数进行了仿真, 仿真结果表明改进的混合蛙跳算法在收敛速度、优化精度上有较大改善。  相似文献   

12.
目的 针对离散粒子群优化(D-PSO)端元提取算法易“早熟”,易陷入局部最优解等问题,引入蛙跳算法,提出了基于蛙跳算法的离散粒子群优化(SFLA-DPSO)端元提取算法.方法 该算法把粒子群分成若干族群,先在每个族群内进行深度寻优,然后在族群间完成信息交流,实现了SFLA算法的全局性、并行性与D-PSO算法的快速收敛性相结合,进而避免粒子陷入局部最优解.分别用SFLA-DPSO、D-PSO和SMACC对云南普朗地区Hperion高光谱影像提取端元;同时,在Hperion和AVIRIS高光谱影像的可行解搜索空间内,分别用SFLA-DPSO、D-PSO和N-FINDR提取端元,借助统计学理论分析计算两种算法在不同迭代次数下达到全局收敛的概率.结果 当达到一定迭代次数后,SFLA-DPSO出现全局收敛的概率基本达到100%,而D-PSO却仅在65%左右,因此SFLA-DPSO算法具有较高的可信度.结论 从而认为SFLA-DPSO克服局部收敛的能力更强,表现出良好的稳定性.  相似文献   

13.
为改善人工蜂群算法(ABC)的深度搜索能力,提出一种改进的人工蜂群算法(SABC)。借鉴混合蛙跳算法(SFLA)的进化机制,将蜂群划分为多个模因组,使每个新个体与自身所在模因组的最坏个体进行优劣比较,能够更加容易保存群体中的"新生"个体,改善群体的整体质量,增加算法的深度搜索能力。通过7个测试函数进行实验,统计结果表明了SABC算法在求解函数优化问题时具有较好的算法性能。  相似文献   

14.
针对蛙跳算法局部搜索能力较弱,容易陷入早熟收敛的现象,提出了一种改进的混合蛙跳算法。新算法对子群中每只新青蛙个体引入了随机扰动,并让子群内每只青蛙个体都参与产生新个体,充分利用每只青蛙个体的信息,增加了种群的多样性,提升算法的全局寻优能力,从而避免算法陷入局部收敛。实验表明,改进的混合蛙跳算法有效避免算法陷入局部收敛,提升了算法的收敛精度。  相似文献   

15.
针对基本混合蛙跳算法在高维多峰函数优化时早熟及难以找到所有全局极值的问题,提出了一种具有混合智能的多态子种群自适应混合蛙跳免疫算法,证明了算法以概率1收敛于全局最优解。该算法采用双层进化模式,融合了混合蛙跳、免疫克隆选择技术。在低层混合蛙跳操作中,加入了多态自适应子种群机制,提高了子种群多样性,有效抑制了早熟现象;在算法进化后期,提出了全局极值筛选策略,将子种群极值点提升到高层免疫克隆选择操作,进一步提高了全局寻优能力。通过复杂多峰函数仿真实验,表明该算法能够快速有效地给出全部全局最优解。  相似文献   

16.
粒子群和人工鱼群混合优化算法   总被引:3,自引:1,他引:2  
提出基于粒子群的人工鱼群混合优化算法,该算法综合利用人工鱼群算法的良好全局收敛性和粒子群算法的局部快速收敛性、易实现性等优点,克服人工鱼群算法收敛速度慢及粒子群算法后期全局收敛差的缺点,发挥了两者的优越性,并成功应用于求解具有变量边界约束的非线性的复杂函数最优化问题和求解复杂化学方程根的问题。仿真结果表明,混合粒子群算法不仅具有较好的全局收敛性能,而且具有较快的收敛速度。  相似文献   

17.
基于群集智能的蚁群优化算法研究   总被引:7,自引:0,他引:7  
群集智能是近年来人工智能领域研究的一个新的热点课题。介绍了这一研究的思想方法和数学模型,以蚂蚁群体的智能行为研究对象,阐述了基于群集智能的蚁群优化算法,并介绍了该算法的工程应用。  相似文献   

18.
由于标准粒子群算法易于陷入局部最优和收敛速度慢等问题,提出了一种引入人工蜂群搜索策略和混合蛙跳搜索策略的粒子群算法(ABCSFL-PSO)。使用人工蜂群的搜索策略提高算法的探索能力,避免算法陷入局部最优;使用蛙跳算法中更新最差粒子的策略,来加快算法收敛速度,并进一步提高求解精度。在12个标准测试函数上的仿真实验结果表明,算法性能优良,不仅能够避免陷入局部最优,而且显著提升了收敛速度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号