共查询到20条相似文献,搜索用时 78 毫秒
1.
2.
该文分析了目前多类分类问题的方法,根据大样本多分类问题的特点,提出了一种新的预抽取支持向量方法,并分别通过对两类和多类进行试验,证实了该方法在保证正确率的情况下,速度也有一定的提高,从而说明了该方法是可行的。 相似文献
3.
采用基于粗糙集属性约简的支持向量机回归预测模型对我国电力供应量进行预测。根据电力供应量及其影响因素的历史数据建立决策表,利用动态层次聚类法对决策表中的连续属性进行了离散化;运用属性约简算法进行约简,提取出主要因素,并将其作为样本的特征,应用支持向量机回归预测模型对电力供应量进行预测。五年预测结果表明:与SVR模型相比,结合了属性约简方法的RS&SVR模型充分利用了更少但是主要的预测因子的信息,预测精度有一定提高,应用效果较好。 相似文献
4.
基于信息粒化的SVM时序回归预测 总被引:1,自引:0,他引:1
为了提高SVM的学习效率和泛化能力,首先利用一种信息粒化算法对原始数据进行预处理,该算法能将样本空间划分为多个粒(子空间),降低样本规模,节省时间复杂度.然后将模糊粒化后的信息利用SVM进行回归分析,同时利用交叉验证选出最优的分类器调节参数,可降低分类器的复杂性和提高分类器的泛化能力,避免出现过学习和欠学习.最后通过预测上证指数的实验验证了该算法具有优越的特性,能够较为准确的进行时序回归预测. 相似文献
5.
基于GA 的SVM R 预测控制研究 总被引:4,自引:0,他引:4
研究高精度、有效、简单的信息预测模型是目前非线性预测控制需要解决的重要问题.SVMR建模方法简单、理论基础完备,所反映的是系统的非线性特征,在建立非线性模型中与神经网络等非线性回归方法相比具有许多独特的优点.为此,提出一种SVMR预测控制结构,利用SVMR建立非线性系统模型,利用GA进行滚动优化.实验证明,这种预测控制具有良好的非线性控制效果. 相似文献
6.
刘德玲 《计算机与数字工程》2011,39(4):56-58
为了提高丙烯酰胺均相聚合预测的精度,建立了基于支持向量机的丙烯酰胺均相聚合预测模型,并采用此模型对实测数据进行了预测。与神经网络的预测结果相比,建立的新型聚合预测模型具有更好的预测精度。 相似文献
7.
为了提高支持向量回归(SVR, Support Vector Regression)进行数据驱动预测的精度,针对SVR存在的参数优化问题,通过引入Tent混沌映射进行种群初始化、改进收敛方式、并结合模拟退火算法,改进了传统的灰狼优化算法(GWO, Grey Wolf Optimization)来优化SVR超参数,并基于改进后的GWO算法提出了一种IGWO-SVR预测模型。将提出的IGWO-SVR模型应用于NASA锂电池数据集仿真SOH预测以及实际生产中的车灯电流预测实验后,实验结果表明IGWO-SVR预测模型在NASA锂电池数据集上进行预测的误差相较GWO-SVR模型降低了23%,相较粒子群算法和遗传算法优化的SVR模型均存在明显优势,误差分别降低了39%和51%;在实际工作中使用IGWO-SVR模型进行车灯电流预测也取得良好效果,与实测值之间的相对误差达到2.67%,相较GWO-SVR模型误差降低了近7个百分点,证明了模型在实际应用中的具有良好的价值。 相似文献
8.
提出了一种新的基于分类的SVM非线性回归算法(CSVR),首先将Y扩展为Y+ε和Y-ε两个数据集,再将n维输入空间X中的数据连同Y+ε和Y-ε组成n+1维空间χ中的两类数据,并用Z∈(+1,-1)来标识两类数据,再利用标准的SVM二分类算法求解。利用该算法对一系列的基准函数进行测试,取得了令人满意的结果。该算法对噪声数据不敏感,具有较好的鲁棒性,并且可以根据实际需要设定ε的大小,防止出现过拟合现象。该算法由于不需要先验地建立一个参数未知的回归模型,因此可以用在其他传统统计回归算法失效的场合。 相似文献
9.
兰州市气温是一个非平稳序列,具有典型噪声大、不稳定的特征,气温变化越大,越不稳定.为了能够提高支持向量机在气温预测中的预测精度、强化泛化能力和降低参数选择的灵敏度.本文提出了改进的粒子群算法(improved particle swarm optimization, IPSO)优化支持向量机(support vector machine, SVM)的气温预测模型.首先在粒子群算法(particle swarm optimization, PSO)中引入了自适应惯性权重以提高PSO算法的全局寻优能力和局部开发能力,其次利用改进的IPSO算法优化SVM的惩罚因子和核函数参数,将优化后的模型(IPSO-SVM)应用于气温预测中.以兰州地面观测站点实际数据作为样本数据,运用Matlab实验工具进行训练和预测,实验结果表明,本文IPSO-SVM模型相比于BP, SVM, GRID-SVM, GWO-SVM, ABC-SVM, ACO-SVM模型具有更强的泛化能力,更好的拟合度,可以更加准确地预测气温的变化,进一步验证了该模型在气温预测方面的可行性. 相似文献
10.
基于支持向量回归机的股票价格预测 总被引:5,自引:0,他引:5
研究股票价格预测问题,股票价格变化具有非线性、时变性,传统线性预测模型难以准确刻画股价变化规律,且非线性神经网络存在过拟合、局部最小等缺陷,预测精度比较低。为提高股票价格预测精度,提出一种基于粒子群优化支持向量机的股票价格预测模型。利用粒子群算法良好的寻优能力,对支持向量机参数进行优化,加快支持向量机学习速度,再采用非线性预测能力优异的支持向量机对股票价格进行预测。以南天信息股票价格对模型性能进行仿真,实验结果证明,支持向量机预测模型能全面反映股票价格变化的非线性的时变规律,获得更高预测精度,预测结果对股民实际操作具有较大的指导价值。 相似文献
11.
针对不平衡数据集分类结果偏向多数类的问题,重采样技术是解决此问题的有效方法之一。而传统过采样算法易合成无效样本,欠采样方法易剔除重要样本信息。基于此提出一种基于SVM的不平衡数据过采样方法SVMOM(Oversampling Method Based on SVM)。SVMOM通过迭代合成样本。在迭代过程中,通过SVM得到分类超平面;根据每个少数类样本到分类超平面的距离赋予样本距离权重;同时考虑少数类样本的类内平衡,根据样本的分布计算样本的密度,赋予样本密度权重;依据样本的距离权重和密度权重计算每个少数类样本的选择权重,根据样本的选择权重选择样本运用SMOTE合成新样本,达到平衡数据集的目的。实验结果表明,提出的算法在一定程度上解决了分类结果偏向多数类的问题,验证了算法的有效性。 相似文献
12.
13.
针对不平衡数据集的低分类效率,基于L-SMOTE算法和混合核SVM提出了一种改进的SMOTE算法(FTL-SMOTE)。利用混合核SVM对数据集进行分类。提出了噪声样本识别三原则对噪声样本进行精确识别并予以剔除,进而利用F-SMOTE和T-SMOTE算法分别对错分和正确分类的少类样本进行采样。如此循环,直到满足终止条件,算法结束。通过在UCI数据集上与经典的SMOTE等重要采样算法以及标准SVM的大量实验表明,该方法具有更好的分类效果,改进算法与L-SMOTE算法相比,运算时间大幅减少。 相似文献
14.
选矿厂磨矿粒度是影响精矿品位和回收率的重要因素。针对目前无法对磨矿粒度进行实时有效检测问题,提出了一种基于支持向量机的磨矿粒度预测模型。通过对现有支持向量机建模方法分析比较,选择了新型的混合核支持向量机作为预测模型的建模工具,同时为了解决有效选择混合核参数问题,提出利用遗传算法对模型结构参数进行优化。仿真结果表明,用该方法建立的磨矿粒度预测模型优于基于RBF核支持向量机建立的该预测模型,其具有较好的逼近性能和泛化性能及更高的预测精度。 相似文献
15.
16.
提出了一种改进的SVM(支持向量机)主动学习方法,通过多次迭代提供给用户信息量最大的样本并将其加入训练集,可以大大减少人工标记样本所耗费的代价。为了评估分类器的性能,实验中对包含了五种音乐流派类别(舞曲、抒情、爵士、民乐、摇滚)的801首音乐样本进行了分类,并在分类准确率的收敛速度和达到同等准确率下需要标注的样本数目两个方面验证了提出的SVM主动学习方法的有效性。 相似文献
17.
18.
19.
针对SVM在对大规模数据分类时求解规模过大的问题,提出了一种缩减数据集以提高训练速度的方法。该算法的第一步利用基于密度的方法大致定位能代表某个局域的质点,然后用SVM训练缩减后的数据得到一组支持向量,第二步的训练数据由支持向量以及其所代表的样本点构成。仿真实验证明该算法在保证分类准确率的情况下能有效地提高分类速度。 相似文献
20.
SVM在许多领域的分类和回归方面起了越来越重要的作用,显示了它的优势。由于SVM方法较好的理论基础和它在一些领域的应用中表现出来的与众不同的优秀的泛化性能,近年来,许多关于SVM方法的应用研究陆续提了出来。围绕支持向量机在分类和回归中的问题进行了阐述,使我国在这一领域的研究和应用能够尽快赶上国际先进水平具有十分重要的意义。 相似文献