共查询到20条相似文献,搜索用时 78 毫秒
1.
2.
3.
小世界网络在聚类应用中具有良好的性质,贝叶斯网络在概率推理中也得到了广泛的研究.将小世界网络和贝叶斯网络结合起来,形成一种混合图模型,并将该模型用于个性化推荐系统中.该混合图模型由两层组成,分别是用户层和商品层.其中小世界网络用于描述用户层内用户-用户结点间的关系,贝叶斯网络用于描述商品层内商品-商品结点以及层间用户-商品结点间的偏好关系.对小世界网络的用户聚类方法、贝叶斯网络结构和参数学习方法以及两层图模型的推荐算法进行描述,实验分析表明,该模型能够很好地表示用户-用户、商品-商品以及用户-商品间的关系,推荐结果具有良好的准确度. 相似文献
4.
6.
杨丹 《数字社区&智能家居》2013,(27):6067-6068,6078
为了解决信息过载的问题,我们可以通过在用户和产品之间建立二元关系的方法,利用已经拥有的比较相似的关系或者选择过程,挖掘出各用户可能感兴趣的对像。目前解决信息过载问题最有效的工具就是个性化推荐,该文利用不同的推荐算法,简单介绍了协同过滤系统,基于内容的推荐系统,基于用户—产品二部图网络结构的推荐系统,混合推荐系统。并分析这些推荐系统的特点以及存在的缺陷,帮助读者了解这个研究领域。 相似文献
7.
基于模糊兴趣模型的个性化推荐算法 总被引:5,自引:0,他引:5
论文在分析现有个性化推荐算法的基础之上,针对个性化的本质特点,结合模糊数学的知识,提出了一种个性化模糊兴趣模型,并建立一对应的推荐算法。实验表明,该模型有着简单,方便,快速推荐的特点。 相似文献
8.
社区发现在个性化推荐系统中有着良好的应用。考虑到具有联系的不同层次社区之间能够构成一种混合的计算模型(HCPR),将该混合计算模型从用户-项目关系图演化到三维立体混合计算模型中,采用不同的融合相似度分别构建项目层社区和用户层社区,并基于用户-项目之间关注-被关注关系定义混合计算层。提出了一种基于两层社区混合计算的个性化推荐方法,面对新用户、旧用户、新项目、旧项目的不同输入定义相应的计算,其能推荐较为精准、个性化的信息。在3种不同类型的数据集上进行了实验,结果表明该模型能够较好地表示用户之间、项目之间以及用户和项目之间的关系,与U-CF和I-CF的推荐方法相比,HCPR借助构建的混合计算层在保证推荐精确度的同时,推荐结果 更为 个性化。 相似文献
9.
随着网络上Web服务的不断增加,Web服务的个性化选择和推荐成为服务计算领域最重要的挑战之一。对个性化Web服务推荐方法进行了研究,提出了基于模型和基于内存混合的Web服务推荐方法。该方法基于客观连续的服务质量(quality of service,QoS)数据和主观离散的评价数据,采用聚类、映射、聚合等算法预测服务的质量,并对用户的期望、评分和服务的QoS信息进行了量化描述。此外,设计了Web服务推荐框架,实现了信息的采集与处理、Web服务的个性化推荐。实验结果表明,与主流的推荐算法相比,所提方法在多种评分误差的评价指标上都取得了更好的结果。 相似文献
10.
新闻每时每刻都在发生,阅读新闻已经成为很多人的习惯。新闻媒体众多,网络媒体凭其迅捷性和便利性成为很多人的首选。网络新闻众多导致新闻过载,这就迫切需要个性化的新闻推荐系统,帮助用户快速地找到感兴趣的新闻。伴随着新闻大数据的产生和移动互联网的蓬勃发展,个性化新闻推荐迎来了新的机遇和挑战。首先介绍了个性化新闻推荐的挑战性;然后提出了个性化新闻推荐系统的基本框架,该框架包含新闻建模、用户建模、推荐引擎和用户接口四个模块,并以该框架为基础,分别综述了每个模块的研究进展,列举了现有的个性化新闻推荐系统中四个模块所采用的技术;最后总结了常用数据集、实验方法、评测指标和未来的研究方向。 相似文献
11.
12.
提出一种基于最大频繁序列模式有向图的页面个性化推荐技术,由于考虑了用户会话的页面访问顺序,比一些不考虑页面访问顺序的推荐技术有更高的准确率。有向图结构压缩存储了所有最大频繁序列模式,推荐引擎依据截取的用户最近访问页面子序列,与有向图的部分路径进行匹配并进行横向推荐和纵向推荐,无需在整个模式库中搜索相同或相似的模式,从而加快了模式匹配的速度,更好地满足了页面推荐的特性和实时要求。实验证明,方法是有效的。 相似文献
13.
随着Web服务的广泛使用和互联网上服务数量的增加,如何向用户提供最佳的服务选择列表成为了新的挑战.Web服务个性化推荐实现了由被动接受用户请求向主动感知用户需求的转变.个性化的Web服务推荐方法已经成为Web服务发现和选择的有效辅助手段.Web服务的个性化推荐技术也成为了近年来服务计算领域的研究热点.对当前Web服务个性化推荐的文献进行了归类分析,总结了当前Web服务个性化推荐的技术现状、研究方法和实验的数据集,列出了未来Web服务个性化推荐研究热点和挑战. 相似文献
14.
在跨域推荐系统中,存在某些用户对所购买的物品进行随意评分的情况。由于对物品进行随意评分的用户的数量较少,当该物品的评分数量较多时随意评分对推荐效果的影响较小,但是当该物品的评分数量较少时,随意评分会对推荐效果产生较大的影响。针对这个问题,提出一种基于评分可靠性的跨域个性化推荐方法。该方法针对不同的评分可靠性,为用户设置不同的阈值。当将辅助域的数据向目标域迁移时,如果用户进行评分的某物品的评分数量低于该用户的阈值,则不将该用户对该物品的评分数据迁移到目标域,否则进行迁移,以此减少随意评分对推荐效果的影响。实验结果表明,整体上,与为所有用户设置统一的阈值和不为用户设置阈值的跨域推荐相比,所提方法具有更高的预测评分的准确度。 相似文献
15.
为了解决现有推荐算法仅考虑同类产品间单向推荐所缺乏的灵活性,提升产品的销量及用户的购物体验,提出一种基于客户喜好的双向个性化推荐算法,不仅可以为客户精准推荐产品,还可以为商家推荐潜在客户.首先,基于产品购买网络中客户及其邻居的购买信息,扩展客户购买信息;其次设计客户产品喜好权重计算办法,分析客户的购买喜好,并在客户喜好的指导下为客户提供个性化的产品推荐;最后,基于商家提供的样本客户,挖掘与样本客户相似的客户构成社区,为商家提供潜在客户推荐以及精准客户维护.在真实数据集上的实验验证了算法的有效性.该算法从客户和商家两个维度出发实现了产品与客户的双向推荐,为个性化推荐领域的研究提供有益的帮助. 相似文献
16.
针对已有服装推荐算法中服装色调与用户颜色特征不协调的问题,将服装搭配的四季色彩理论与计算机视觉领域的推荐方法相结合,提出一种面向个性化服装推荐的判断优化模型。提出四季色彩判断模型,对根据输入的人脸图像提取得到的用户颜色特征集进行分类;建立优化处理模型,根据四季色彩判断模型结果和用户所需风格进行优化处理并获得服装预推荐结果;通过用户评分及反馈机制,提高优化结果,得到最终推荐结果。实验表明,该方法能实现与用户颜色特征相协调的个性化的服装推荐,并且在实际应用中具有较高的准确率。 相似文献
17.
为减少评分数据稀疏性造成的群推荐精度损失,借助用户生成的项目属性特征,提出一种增强群体偏好的混合群推荐方法。一方面,针对用户-项目评分信息,采用协同过滤手段产生群推荐项目候选子集。另一方面,利用群体生成的项目属性分布特征,挖掘群体对项目属性的偏好,并以项目属性权重的方式融入到项目相似性计算中。通过聚类,产生反映群体偏好的项目集,将群体喜好的集合扩充到用于推荐的项目候选集中,实现群推荐项目候选集中群体偏好的增强。最后,从项目候选集中生成群推荐结果。将该方法应用大众点评网上餐厅的推荐,验证了项目属性特征对群推荐结果的积极影响。实验结果表明该方法在准确率和召回率上较经典群推荐方法都有大幅度提高。 相似文献
18.
在2009年结束的Netflix推荐大赛中,由于顶级参赛小组均使用集成学习算法,使得基于Bagging和Stacking的Ensemble方法得到了广泛的关注,而基于Boosting的集成学习方法相对来说却无人问津。首先分析了基于Boosting的集成学习算法在分类问题中的优势,以及在推荐问题上的缺陷。通过对用户评分矩阵的简化和分解,将问题转换为简单的分类问题,使得Boosting的集成学习算法能够应用到推荐问题中,提出了基于KNN的集成学习推荐算法,通过集成多个不同的相似度计算方法来提高最终的推荐准确率。在大规模真实数据集上的实验说明,基于Boosting的学习框架可以较大提升单个推荐算法的性能。 相似文献
19.
随着WWW的迅速发展和网络用户的急剧增加,准确预测Web用户的访问行为对减小用户的感知延时,实现个性化推荐等具有重要的作用.无论是Markov模型还是其任何一种变种,高阶模型具有较好的预测性能.然而,高阶模型通常有较高的状态空间复杂度.提出了一种新的混合阶Markov模型(HMPM),将前缀相同的序列共享存储,降低了状态空间复杂度.仿真实验结果表明,该模型在一定程度上提高了预测准确率,查全率也有所提升. 相似文献
20.
合作者推荐工作对科学研究的发展和科技成果的转化很有帮助,然而学者间水平的差距严重影响了合作的建立。模型从学者间学术水平差距,合作网络的拓扑距离以及研究兴趣三个角度进行合作者推荐。首先,定义了学者—学者、学者—主题、学者—水平标签三种网络,并融合成主题—学者—水平标签图;之后对该图中的边赋权重,从而将合作者推荐任务转换为链路预测问题;最后使用偏向重启随机游走算法计算学者间的访问概率,并筛选访问概率大的学者作为推荐建议。在三个数据集上的实验表明,模型在推荐的准确率、召回率、F1指数上平均提高了5.4%、2.7%、3.8%,同时目标学者与推荐学者的学术水平匹配度更高。 相似文献