首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An accurate bit-error-rate (BER) calculation method is derived for a binary direct-sequence (DS) spread-spectrum multiple-access (SSMA) system using conventional matched filter receivers and random sequences on flat-fading Nakagami channels. A closed-form expression for the characteristic function of a sum of multiple Nakagami interfering signals is found. The accuracy of the standard Gaussian approximation (SGA) is assessed for DS code-division multiple-access (CDMA) systems operating on Nakagami fading channels.  相似文献   

2.
Throughput, delay, and stability for two slotted ALOHA packet radio systems are compared. One system is a slotted direct-sequence spread-spectrum multiple-access (DS/SSMA) network where each user employs a newly chosen random signature sequence for each bit in a transmitted packet. The other system is a multiple-channel slotted narrow-band ALOHA network where each packet is transmitted over a randomly selected channel. Accurate packet success probabilities for the code-division multiple-access (CDMA) system are computed using an improved Gaussian approximation technique which accounts for bit-to-bit error dependencies. Average throughput and delay results are obtained for the multiple-channel slotted ALOHA system and CDMA systems with block error correction. The first exit time (FET) is computed for both systems and used as a measure of the network stability. The CDMA system is shown to have better performance than the multiple-channel ALOHA system in all three areas  相似文献   

3.
A conditional probability density function of the multiple-access interference (MAI) in direct-sequence spread-spectrum multiple access (DS/SSMA) systems with complex modulation (e.g., M-ary and continuous phase) is derived from a geometric viewpoint. A method to efficiently calculate the two-dimensional (2-D) convolutions of a number of circularly symmetric densities is presented. The utility of these methods is then illustrated by evaluating a noncoherent DS/SSMA system  相似文献   

4.
Arbitrarily tight upper and lower bounds on the pairwise error probability (PEP) of a trellis-coded or convolutional-coded direct-sequence spread-spectrum multiple-access (DS/SSMA) communication system over a Rayleigh fading channel are derived. A new set of probability density functions (PDFs) and cumulative distribution functions (CDFs) of the multiple-access interference (MAI) statistic is derived, and a modified bounding technique is proposed to obtain the bounds. The upper bounds and lower bounds together specify the accuracy of the resulting estimation of the PEP, and give an indication of the system error performance. Several suboptimum decoding schemes are proposed and their performances are compared to that of the optimum decoding scheme by the average pairwise error probability (APEP) values. The approach can be used to accurately study the multiple-access capability of the coded DS/SSMA system without numerical integrations  相似文献   

5.
This paper considers the application of trellis coding techniques to direct-sequence spread-spectrum multiple-access (DS/SSMA) communication. The unique feature of the trellis codes considered is that they are constructed over the set of possible signature sequences rather than over some standard 2-D signal constellation. The resulting codes have a small number of signals per dimension. We present several examples of these trellis codes, and suggest possible methods of implementation. We also present a detailed error analysis for this system, which employs techniques developed by Lehnert and Pursley (1987, 1989)) to accurately model the multiple access interference. We generate numerical results for several examples and conclude that the proposed trellis coded systems yield significant performance improvements over binary antipodal DS/SSMA systems. In addition, the new trellis codes perform better than standard error control techniques with the same complexity and code rate. Analytic results are verified with simulations  相似文献   

6.
The performance of synchronous spread-spectrum multiple-access (SSMA) communications based on direct-sequence (DS), slow frequency-hopped (SFH), and fast frequency-hopped (FFH) systems for wireless local communications of micro-cellular personal communications is analyzed. Using an indoor multipath fading channel model with clusters of arriving rays, we investigate multiuser DS systems with RAKE and diversity reception by selection combining (SC), multiuser SFH systems with equal-gain (EG) diversity reception, and multiuser FFH systems with correlated EG and self-normalization (SN) combining techniques. Reed-Solomon codes are considered to further improve the system performance. Given a fixed available bandwidth with narrow band interference (NBI), capacities and packet error rates are determined under various system configurations. Total capacities of hybrid frequency-division multiple-access (FDMA)/SSMA (DS and SFH) systems are compared with those of wide-band SSMA systems. For high data rate communications, wide-band DS-SSMA systems have larger capacities than hybrid FDMA/DS-SSMA systems. For low data rate communications, a capacity comparison between wide-band DS-SSMA and hybrid FDMA/DS-SSMA systems depends on fading statistics. Hybrid FDMA/SFH-SSMA systems have larger capacities than wide-band DS-SSMA systems, FFH-SSMA systems could not provide satisfactory performance due to correlation among hopping bands  相似文献   

7.
Partial successive interference cancellation is considered in hybrid DS/FH spread-spectrum multiple-access (SSMA) systems. We first show that the lowest BER attained by employing full interference cancellation in DS/SSMA systems can almost be achieved by employing a partial interference cancellation in hybrid DS/FH systems. The reduction in the number of cancellations translates into an alleviation of correlator speed requirements and a reduction in delays incurred in interference cancellations. The optimal number of frequency slots that minimizes the BER is investigated as a function of the number of interference cancellations. The effect of imperfect power control on the BER is investigated  相似文献   

8.
A technique is presented for obtaining bounds on the average probability of error for direct-sequence spread-spectrum multiple-access (DS/SSMA) communications. The technique is of interest because it yields arbitrarily right bounds, involves a small amount of computation, avoids numerical integrations, and applies to many types of detection. As an illustration, the technique is applied to binary DS/SSMA communications, an additive white Gaussian noise channel, and a coherent correlation receiver. It is assumed that all the signature sequences are deterministic. Each transmitter is assumed to have the same power, although the approach can accommodate the case of transmitters with unequal powers. Expressions are given for the density functions of the random variables that model the multiple-access interference. These expressions are used to obtain arbitrarily tight upper and lower bounds on the average probability of error without making a Gaussian approximation or performing numerical integrations to incorporate the effects of multiple-access interference  相似文献   

9.
A direct-sequence spread-spectrum multiple-access (DS SSMA) system was examined, realized (hardware), and tested. Essentially, two transmitters were built: one had voice capability, whereas the other transmitted only binary data. Gold codes were used for the spreading sequence. The PN synchronization used a serial search technique for acquisition, and a tau-dither loop for tracking. A squaring loop and a differential encoding scheme (for carrier phase ambiguity) was used in the demodulation process, which was followed by conversion to a voice output when desired. The system was found to perform quite well under both single and multiple-access conditions. As a demonstration of the feasibility of implementing the system on chips, a few small blocks were put on ICs using CMOS technology. These performed as expected, and clearly demonstrated both the feasibility and attractiveness of a VLSI implementation  相似文献   

10.
For pt.I see ibid., vol.COM-35, no.11, p.1179-88 (1987). In part I it was demonstrated that impulsive channel noise can be a serious detriment to the performance of direct-sequence spread-spectrum multiple-access (DS/SSMA) communications when conventional linear correlation reception is used. Here, a hard-limiting correlator as an alternative for reception of multiple-access transmission in impulsive channels is considered. For K asynchronous binary PSK DS/SSMA users sharing a linear channel corrupted by impulsive noise that is modeled at the output of the front-end filter of the receiver, techniques are developed for analyzing bit error probabilities of this hard-limiting receiver by exact computation for short spreading sequences, by approximation for longer spreading sequences, and by asymptotic limits for infinitely long spreading sequences. Performance is compared to that of the linear correlator under a variety of conditions, showing that hard-limiting correlation reception can offer substantial improvement over conventional systems in impulsive channels. However, the linear receiver is more effective against multiple-access noise only, and so a tradeoff emerges between rejection of impulsive noise and rejection of multiple-access interference  相似文献   

11.
This paper considers the combination of multiple copies of a packet to improve the performance of a slotted direct-sequence spread-spectrum multiple-access (DS/SSMA) ALOHA packet radio system with coherent binary phase-shift keying (BPSK) modulation. Both slotted DS/SSMA ALOHA with and without forward error correction (FEC) are considered. For the case with FEC, maximum-likelihood decoding with code combining is used. Code combining allows for the combination of multiple copies of the same packet (which are typically discarded), to obtain a lower code rate for that specific packet, and therefore an improved probability of successful decoding. In both cases, combining multiple copies of the same packet results in a throughput which is an increasing function over a broad range of offered load, so that the system is more reliable from the point of view of stability. In addition, combining provides a higher throughput and a smaller time delay for packet transmission. This is illustrated by means of analytical and simulation results  相似文献   

12.
Neural network techniques for adaptive multiuser demodulation   总被引:10,自引:0,他引:10  
Adaptive methods for performing multiuser demodulation in a direct-sequence spread-spectrum multiple-access (DS/SSMA) communication environment are investigated. In this scenario, the noise is characterized as being the sum of the interfering users' signals and additive Gaussian noise. The optimal receiver for DS/SSMA systems has a complexity that is exponential in the number of users. This prohibitive complexity has spawned the area of research on suboptimal receivers with moderate complexity. Adaptive algorithms for detection allow for reception when the communication environment is either unknown or changing. Motivated by previous work with radial basis functions (RBF's) for performing equalization, RBF networks that operate with knowledge of only a subset of the system parameters are studied. Although this form of detection has been previously studied (group detection) when the system parameters are known, in this work, neural network techniques are employed to adaptively determine unknown system parameters. This approach is further bolstered by the fact that the optimal detector in the synchronous case can be implemented by a RBF network when all of the system parameters are known. The RBF network's performance (with estimated parameters) is compared with the optimal synchronous detector, the decorrelating detector and the single layer perceptron detector. Clustering techniques and adaptive least mean squares methods are investigated to determine the unknown system parameters. This work shows that the adaptive radial basis function network attains near optimal performance and is robust in realistic communication environments  相似文献   

13.
Direct-sequence spread-spectrum multiple-access (DS/SSMA) communication systems with random m-phase sequences, for even m, are considered. By examining the asymptotic behavior of the normalized multiple-access interference (MAI), the authors find that a system with random m-phase sequences, for m>4, should have the same performance as one with random quadriphase sequences asymptotically. However, a system, with random m-phase sequences, for m⩾4, may perform better than one with random binary sequences when the number of simultaneous users is relatively small. A new Gaussian approximation is proposed to estimate the probabilities of error in these systems. In two cases, the new approximation reduces to established results which have been shown to provide close estimates to the probabilities of error  相似文献   

14.
Simplified noncoherent and differentially coherent spread-spectrum (SS) minimum shift keying (MSK) receiver structures are presented. It is shown that an optimal noncoherent SS receiver for pure (with rectangular baseband pulses) offset QPSK signals can serve as a suboptimal (performance loss ≃0.9 dB) noncoherent receiver for SS MSK signals. The conditions of orthogonality of SS MSK signals are derived in synchronous and quasi-synchronous code-division multiple-access (CDMA) systems. Computer simulation results evaluate the performance of the CDMA system with suggested receivers under certain conditions  相似文献   

15.
An analysis of unslotted random-access direct-sequence spread-spectrum multiple-access (DS/SSMA) channels with block forward error correction (FEC) coding is presented. Extending a methodology that was introduced in an earlier paper on unslotted packet code-division multiple access (CDMA) without coding, a procedure for calculating the error probability of an L-bit packet in the variable message length, FEC-coded, DS/SSMA environment is described. This procedure is then used in conjunction with appropriate flow equilibrium traffic models to compute channel throughput. Using BCH block coding as an example, the analytical model is exercised to obtain throughput versus channel traffic curves over a range of code rates, leading to an assessment of maximum achievable throughput and the associated optimum FEC code rate. The results show that the use of block FEC coding provides a significant improvement in the bandwidth-normalized channel throughput (utilization), approaching values competitive with those for comparable narrowband ALOHA channels  相似文献   

16.
本文将多重TCM技术应用于室内慢衰落信道下的直接序列扩频多址(DS/SSMA)系统中,提出了一种发射端和接收端分别采用多重伪码扩频和多重相关接收的DS/SSMA系统模型及其理论分析方法。在系统用户数、用户信源比特速率和伪码周期相同的条件下,模拟结果表明采用多重TCM的DS/SSMA系统性能显著优于一重TCMDS/SSMA系统的性能  相似文献   

17.
考虑一个相干解调的同步直接序列扩频多址通信系统,给出了采用预去相关发射机基站的发射功率统计特性。结果表明,一个K用户基站的总发射功率的最大值与特征波形互相关系数平方成反比,发射功率的标准差为O(K-1)。当特征波形互相关系数小于20%时,和传统系统相比一个基站的总发射功率不会大于1.94dB  相似文献   

18.
A technique is developed to find an accurate approximation to the probability of data bit error and the probability of packet success in a direct-sequence spread-spectrum multiple-access (DS/SSMA) packet radio system with random signature sequences. An improved Gaussian approximation to the probability of data bit error is performed. Packet performance is analyzed by using the theory of moment spaces to gain insight into the effect of bit-to-bit error dependence caused by interfering signal relative delays and phases which are assumed constant over the duration of a desired packet. Numerical results show that if no error control exists in the desired packet or if block error control is used when multiple-access interference is high, the error dependence increases the average probability of packet success beyond that predicted by models which use independent bit errors. However, when block error control is used and the multiple-access interference is low, the bit error dependencies cause a reduction in packet error performance  相似文献   

19.
The exact calculation of error probabilities for direct-sequence spread-spectrum multiple-access (DS/SSMA) systems has been addressed in the literature. The exact calculation is computationally difficult, so emphasis has been on approximations and bounds. One particularly attractive approximation is to just use a signal-to-noise ratio in a Gaussian approximation, the `standard approximation'. Unfortunately, that approximation is not generally accurate enough. An improved Gaussian approximation with good accuracy has recently been presented. The author derives an accurate Gaussian approximation which is also computationally very simple  相似文献   

20.
The dependence of the error performance and spectral efficiency of direct-sequence spread-spectrum multiple-access (DS/SSMA) systems with matched filter receivers on the chip waveform is examined. The actual shape of the chip waveform, as well as its energy, is found to influence the statistical properties of the multiple-access interference (MAI). An approach to design waveforms that may result in interchip interference (ICI) is proposed and a criterion for design based on the conditional Gaussian approximation of the MAI for systems with aperiodic random spreading sequences is derived. For a simplified system, a closed-form solution for optimal band-limited waveforms is obtained for excess bandwidth less than or equal to one by using a performance metric that includes the effect of ICI. Numerical results, based on an analytical method, as well as Monte Carlo simulations, are provided to evaluate the performance of the proposed waveforms in general systems with conventional matched filter receivers  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号