首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 392 毫秒
1.
Response characteristics of neurons in the gustatory and visceral zone of the parabrachial nucleus (PBN) to gamma-aminobutyric acid (GABA) were examined using whole cell recordings in brain slices of the rat. Based on the recording site, neurons were divided into three groups: neurons in the dorsolateral quadrant of the PBN (DL-neurons), neurons in the dorsomedial quadrant of the PBN (DM-neurons) and neurons in the ventromedial quadrant of the PBN (VM-neurons). Recordings were made from 44 DL-, 43 DM-, 39 VM-neurons. Superfusion of GABA resulted in a concentration-dependent reduction in input resistance in 67.5% of the neurons in the PBN (73.1% of the DL-, 62.5% of the DM-, 66.7% of the VM-neurons). No obvious difference of the concentration-response curve was found among three groups. The mean reversal potential of the GABA effect was about -74 mV and no significant differences were observed among three groups of neurons. The GABA response was partly or completely blocked by the GABAA antagonist bicuculline in all neurons tested. Superfusion of the GABAA agonist muscimol resulted in a decrease of the input resistance in all neurons tested. It was concluded that GABA functions as an inhibitory neurotransmitter in both gustatory and visceral part of the PBN, mediated in part, by GABAA receptors.  相似文献   

2.
Gramicidin-perforated patch-clamp recording revealed phasic Cl(-)-mediated hyperpolarizations in respiratory neurons of the brainstem-spinal cord preparation from newborn rats. The in vitro respiratory rhythm persisted after block of gamma-aminobutyric acid (GABA), i.e. GABAA, receptor-mediated inhibitory postsynaptic potentials (IPSPs) with bicuculline and/or glycinergic IPSPs with strychnine. In one class of expiratory neurons, bicuculline unmasked inspiration-related excitatory postsynaptic potentials (EPSPs), leading to spike discharge. Bicuculline also blocked hyperpolarizations and respiratory arrest due to bath-applied muscimol, whereas strychnine antagonized similar responses to glycine. The reversal potential of respiration-related IPSPs and responses to GABA, muscimol or glycine was not affected by CO2/HCO3(-)-free solutions, but shifted from about -65 mV to values more positive than -20 mV upon dialysis of the cells with 144 instead of 4 mM Cl-. Impairment of GABA uptake with nipecotic acid or glycine uptake with sarcosine evoked a bicuculline- or strychnine-sensitive decrease of respiratory frequency which could lead to respiratory arrest. Also, the GABAB receptor agonist baclofen led to reversible suppression of respiratory rhythm. This in vitro apnoea was accompanied by a K+ channel-mediated hyperpolarization (reversal potential -88 mV) of tonic cells, whereas membrane potential of neighbouring respiratory neurons remained almost unaffected. Both baclofen-induced hyperpolarization and respiratory depression were antagonised by 2-OH-saclofen, which did not affect respiration-related IPSPs per se. The results show that synaptic inhibition is not essential for rhythmogenesis in the isolated neonatal respiratory network, although (endogenous) GABA and glycine have a strong modulatory action. Hyperpolarizing IPSPs mediated by GABAA and glycine receptors provide a characteristic pattern of membrane potential oscillations in respiratory neurons, whereas GABAB receptors rather appear to be a feature of non-respiratory neurons, possibly providing excitatory drive to the network.  相似文献   

3.
Inhibitory synaptic transmission is of fundamental importance during the maturation of central auditory circuits, and their subsequent ability to process acoustic information. The present study investigated the manner in which inhibitory transmission regulates intracellular free calcium levels in the gerbil inferior colliculus using a brain slice preparation. Inhibitory and excitatory postsynaptic potentials were evoked by electrical stimulation of the ascending afferents at the level of the dorsal nucleus of the lateral lemniscus. Pharmacologically isolated inhibitory synaptic potentials were able to attenuate a calcium rise in collicular neurons that was generated by depolarizing current injection. In addition, GABA(A) and glycine receptor antagonists typically led to an increase of calcium in collicular neurons during electrical stimulation of the ascending afferent pathway at the level of the dorsal nucleus of the lateral lemniscus. Bath application of GABA or muscimol, a GABA(A) receptor agonist, evoked a brief hyperpolarization followed by a long-lasting depolarization in inferior colliculus neurons. This treatment also induced a transient calcium increase that correlated with the membrane depolarization phase. Baclofen, a GABA(B) receptor agonist, had no effect on either membrane potential or calcium levels. Ratiometric measures indicated that the muscimol-evoked rise in calcium was approximately 150 nM above basal levels. The muscimol-evoked responses were completely antagonized by bicuculline and attenuated by picrotoxin. Together, these results suggest that inhibitory synaptic transmission participates in the regulation of postsynaptic calcium during the developmental period. Inhibitory transmission may attenuate a calcium influx that is evoked by excitatory synapses, but it can also produce a modest influx of calcium when activated alone. These mechanisms may help to explain the influence of inhibitory transmission on the development of postsynaptic properties.  相似文献   

4.
Dopamine (DA) decreases activity in many hypothalamic neurons. To determine the mechanisms of DA's inhibitory effect, whole cell voltage- and current-clamp recordings were made from primary cultures of rat hypothalamic and arcuate nucleus neurons (n = 186; 15-39 days in vitro). In normal buffer, DA (usually 10 microM; n = 23) decreased activity in 56% of current-clamped cells and enhanced activity in 22% of the neurons. In neurons tested in the presence of glutamate receptor antagonists D,L-2-amino-5-phosphonovalerate (AP5; 100 microM) and 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX; 10 microM), DA application (10 microM) revealed heterogeneous effects on electrical activity of cells, either hyperpolarization and decrease in activity (53% of 125) or depolarization and increase in spontaneous activity (22% of 125). The DA-mediated hyperpolarization of membrane potential was associated with a decrease in the input resistance. The reversal potential for the DA-mediated hyperpolarization was -97 mV, and it shifted in a positive direction when the concentration of K+ in the incubating medium was increased, suggesting DA activation of K+ channels. Because DA did not have a significant effect on the amplitude of voltage-dependent K+ currents, activation of voltage-independent K+ currents may account for most of the hyperpolarizing actions of DA. DA-mediated hyperpolarization and depolarization of neurons were found during application of the Na+ channel blocker tetrodotoxin (1 microM). The hyperpolarization was blocked by the application of DA D2 receptor antagonist eticlopride (1-20 microM; n = 7). In the presence of AP5 and CNQX, DA (10 microM) increased (by 250%) the frequency of spontaneous inhibitory postsynaptic currents (IPSCs) in 11 of 19 neurons and evoked IPSCs in 7 of 9 cells that had not previously shown any IPSCs. DA also increased the regularity and the amplitude (by 240%) of spontaneous IPSCs in 9 and 4 of 19 cells, respectively. Spontaneous and DA-evoked IPSCs and inhibitory postsynaptic potentials were blocked by the gamma-aminobutyrate A (GABA(A)) antagonist bicuculline (50 microM), verifying their GABAergic origin. Pertussis toxin pretreatment (200 ng/ml; n = 15) blocked the DA-mediated hyperpolarizations, but did not prevent depolarizations (n = 3 of 15) or increases in IPSCs (n = 6 of 10) elicited by DA. Intracellular neurobiotin injections (n = 21) revealed no morphological differences between cells that showed depolarizing or hyperpolarizing responses to DA. Immunolabeling neurobiotin-filled neurons that responded to DA (n = 13) showed that GABA immunoreactive neurons (n = 4) showed depolarizing responses to DA, whereas nonimmunoreactive neurons (n = 9) showed both hyperpolarizing (n = 6) and depolarizing (n = 3) responses. DA-mediated hyperpolarization, depolarization, and increases in frequency of postsynaptic activity could be detected in embryonic hypothalamic or arcuate nucleus neurons after only 5 days in vitro, suggesting that DA could play a modulatory role in early development. These findings suggest that DA inhibition in hypothalamic and arcuate nucleus neurons is achieved in part through the direct inhibition of excitatory neurons, probably via DA D2 receptors acting through a Gi/Go protein on K+ channels, and in part through the enhancement of GABAergic neurotransmission.  相似文献   

5.
The suprachiasmatic nuclei (SCN) at the base of the hypothalamus are known to be the site of the endogenous circadian pacemaker in mammals. The SCN are innervated by the retinohypothalamic tract, which conveys photic information to the SCN. GABA is one of the most abundant neurotransmitters in the SCN, and has been implicated in the modulation of photic responses of the SCN circadian pacemaker. This study sought to examine the effect of GABAergic compounds on optic nerve-evoked SCN field potentials recorded in rat horizontal hypothalamic slices. The GABAA agonist muscimol (10 microM) potentiated SCN field potentials by 23%, while application of the GABAA antagonist bicuculline (10 microM) inhibited SCN field potentials by a similar amount, (22%). Conversely, the GABA, agonist baclofen (1.0 microM) inhibited SCN field potentials by 48%, while the GABAB antagonist phaclofen (0.5 mM) augmented SCN field potentials by 62%. Recordings performed at both day and night times indicate that there were no qualitative day-night differences in GABAergic activity on SCN field potentials. This study concludes that, in general, GABAA activity tends to increase, and GABAB activity tends to decrease the response of SCN neurons to optic nerve stimulation.  相似文献   

6.
In previous work, we showed a robust gamma-aminobutyric acid (GABAergic) synaptic input onto embryonic luteinizing hormone-releasing hormone (LHRH) neurons maintained in olfactory explants. In this study, we identify GABAergic neurons in olfactory pit (OP) of embryonic mice in vivo and study, using patch-pipet whole-cell current and voltage clamp techniques, synaptic interactions of these neurons in explant cultures. In vivo, glutamate decarboxylase (GAD, the enzyme which synthesizes GABA) mRNA was first detected in nasal regions on Embryonic Day (E) 11.5. From E12.5 to E13.5, robust GAD expression was localized to cells primarily in the ventral aspect of the OP. GAD mRNA was not detected over dorsally located cells in olfactory sensory or respiratory epithelium. In addition, GAD mRNA was not observed in cells along olfactory axons. GAD mRNA was dramatically reduced in the OP/vomeronasal organ by E16.5. Using antibodies against both GABA and GAD, immunopositive axonal-like tracts were detected in the nasal septum on E12.5. GABAergic staining decreased by E13.5. To examine synaptic interactions of these GABAergic cells, embryonic olfactory explants were generated and maintained in serum-free media. As explants spread, neuron-like cells migrated into the periphery, sometimes forming ganglion-like clusters. Cells were recorded, marked intracellularly with Lucifer Yellow and post-fixation, immunocytochemically examined. Forty-six cells, typically multipolar, were GABAergic, had resting potentials around -50 mV, and exhibited spontaneous action potentials which were generated by spontaneous depolarizing GABAergic (GABAA) synaptic activity. OP neurons depolarized in response to GABA by increasing Cl- conductance. The biophysical properties of OP-derived GABAergic neurons were distinct from those reported for olfactory receptor neurons but similar to embryonic LHRH neurons. However, unlike LHRH neurons, GABAergic neurons did not migrate large distances in olfactory explants or appear to leave the olfactory pit in vivo.  相似文献   

7.
In contrast to the mature brain, in which GABA is the major inhibitory neurotransmitter, in the developing brain GABA can be excitatory, leading to depolarization, increased cytoplasmic calcium, and action potentials. We find in developing hypothalamic neurons that glutamate can inhibit the excitatory actions of GABA, as revealed with fura-2 digital imaging and whole-cell recording in cultures and brain slices. Several mechanisms for the inhibitory role of glutamate were identified. Glutamate reduced the amplitude of the cytoplasmic calcium rise evoked by GABA, in part by activation of group II metabotropic glutamate receptors (mGluRs). Presynaptically, activation of the group III mGluRs caused a striking inhibition of GABA release in early stages of synapse formation. Similar inhibitory actions of the group III mGluR agonist L-AP4 on depolarizing GABA activity were found in developing hypothalamic, cortical, and spinal cord neurons in vitro, suggesting this may be a widespread mechanism of inhibition in neurons throughout the developing brain. Antagonists of group III mGluRs increased GABA activity, suggesting an ongoing spontaneous glutamate-mediated inhibition of excitatory GABA actions in developing neurons. Northern blots revealed that many mGluRs were expressed early in brain development, including times of synaptogenesis. Together these data suggest that in developing neurons glutamate can inhibit the excitatory actions of GABA at both presynaptic and postsynaptic sites, and this may be one set of mechanisms whereby the actions of two excitatory transmitters, GABA and glutamate, do not lead to runaway excitation in the developing brain. In addition to its independent excitatory role that has been the subject of much attention, our data suggest that glutamate may also play an inhibitory role in modulating the calcium-elevating actions of GABA that may affect neuronal migration, synapse formation, neurite outgrowth, and growth cone guidance during early brain development.  相似文献   

8.
A number of studies have indicated a possible interaction between dopamine and the vestibular system. Using intracellular recordings in brainstem slices, we have tested the effects of dopamine and other dopaminergic compounds on guinea-pig medial vestibular nucleus (MVN) neurons. In normal medium, MVN neurons were depolarized by dopamine as well as by (-)quinpirole and piribedil, which are selective D2 dopaminergic agonists. The dependence of this effect on the presence of D2 receptors was confirmed by using (-)sulpiride, a D2 antagonist which blocked the depolarizing effect of dopamine. Dopaminergic D1 receptors were apparently not involved in this effect since a selective D1 agonist, SKF-38393, had no effect on MVN neurons and the D1 antagonist (+)SCH-23390 could not block the effect of dopamine. These depolarizing responses to dopamine must be due to a presynaptic action on terminals that normally release GABA spontaneously on MVN neurons, and tonically maintain them in a state of hyperpolarization. Indeed, such a spontaneous release was demonstrated to occur in the slice since application of bicuculline, a GABAA antagonist, depolarized MVN neurons in normal saline, but not in a high Mg2+/low Ca2+ solution known to block synaptic transmission. When dopamine was applied in conditions in which no GABAA-dependent transmission could occur (either in the presence of bicuculline or in a high Mg2+/low Ca2+ solution) only a hyperpolarizing, most probably postsynaptic, effect occurred. These results indicate that dopamine might exert in vivo a significant modulatory action on the vestibular system, either by a direct action on the vestibular neurons or by modulation of GABAergic transmission.  相似文献   

9.
Whereas GABA is a major inhibitory neurotransmitter in the adult central nervous system, recent experiments performed in our laboratory have shown that the activation of GABAA receptors in the hippocampus leads to excitatory effects during the early post-natal period. The possible consequence of a depolarizing effect of GABA was assessed on the neuritic outgrowth of embryonic hippocampal neurons in culture. No morphological alterations were observed when hippocampal neurons were cultured for three days in the presence of muscimol, a GABAA receptor agonist. In contrast, the neuritic outgrowth of cultured hippocampal neurons was profoundly affected by the presence of bicuculline in the culture medium. In the presence of this GABAA receptor antagonist neurons displayed a reduction in the number of primary neurites and branching points, resulting in a concomitant decrease of the total neuritic length. Thus, this study suggests that GABA, acting on GABAA subtype of receptors, is able to affect the development of the hippocampus.  相似文献   

10.
During development, a subpopulation of olfactory neurons transiently expresses GABA. The spatiotemporal pattern of GABAergic expression coincides with migration of luteinizing hormone-releasing hormone (LHRH) neurons from the olfactory pit to the CNS. In this investigation, we evaluated the role of GABAergic input on LHRH neuronal migration using olfactory explants, previously shown to exhibit outgrowth of olfactory axons, migration of LHRH neurons in association with a subset of these axons, and the presence of the olfactory-derived GABAergic neuronal population. GABAA receptor antagonists bicuculline (10(-5) M) or picrotoxin (10(-4) M) had no effect on the length of peripherin-immunoreactive olfactory fibers or LHRH cell number. However, LHRH cell migration, as determined by the distance immunopositive cells migrated from olfactory pits, was significantly increased by these perturbations. Addition of tetrodotoxin (10(-6) M), to inhibit Na+-transduced electrical activity, also significantly enhanced LHRH migration. The most robust effect observed was dramatic inhibition of LHRH cell migration in explants cultured in the presence of the GABAA receptor agonist muscimol (10(-4) M). This study demonstrates that GABAergic activity in nasal regions can have profound effects on migration of LHRH neurons and suggests that GABA participates in appropriate timing of LHRH neuronal migration into the developing brain.  相似文献   

11.
Caffeine (10-40 mg/kg, p.o.) enhanced locomotor activity (LA). Administration of GABA antagonist, bicuculline (0.5-1.0 mg/kg, i.p.), potentiated this caffeine-induced increase of LA, as well as LA of control rats. Treatment with the GABA agonist, muscimol (0.25-1 mg/kg, i.p.) or dopaminergic antagonist, haloperidol (0.25-1 mg/kg, i.p.) or muscarinic receptor blocker, atropine (3.75-5 mg/kg, i.p.), or inhibitor of acetylcholine esterase physostigmine (0.05-0.30 mg/kg, i.p.) or nicotine (0.5-1.5 mg/kg, i.p.) an nicotinic receptor agonist all decreased the LA of both caffeine-treated and control rats. Haloperidol-induced reduction in caffeine-induced increase in LA was found to be withdrawn with higher dose of caffeine. The dopamine agonist L-Dopa (75-150 mg/kg, p.o.) along with carbidopa (10 mg/kg, p.o.) increased the LA in control rats and potentiated the LA of caffeine treated rats. The haloperidol attenuated the bicuculline-induced increase in LA and atropine or physostigmine attenuated the bicuculline or L-Dopa + carbidopa-induced increase in LA in both caffeine treated and control rats when those drugs were administered concomitantly with bicuculline or L-Dopa+carbidopa. These results suggest that (a) the GABAergic system has direct role in the regulation of LA, and (b) caffeine potentiates LA by antagonism of the adenosine receptor and activation of the dopaminergic system which, in turn, reduces GABAergic activity through the reduction of cholinergic system.  相似文献   

12.
The involvement of GABAA and GABAB receptors in neural mechanisms responsible for the production of theta rhythms in hippocampal formation (HPC) slices is addressed in the present study. In a number of papers published in the last decade, we have demonstrated that theta-like activity can be successfully recorded in the limbic cortex maintained in vitro when the cholinergic agonists, acetylcholine, carbachol or muscarine, were added to the bath. Recently, we have also shown a strong GABAA modulation of the cholinergic-induced in vitro theta-like activity. This study presents a report of the first demonstration of in vitro theta-like field responses induced a consequence of simultaneously inhibiting hippocampal GABAA and GABAB receptors. HPC slices (350 microns) were maintained in a gas-liquid interface chamber (35 degrees C). Theta-like activity was induced in the presence of bath perfusion of bicuculline (GABAA antagonist) and 2-hydroxysaclophen (GABAB antagonist). This in vitro induced field response was antagonized both by muscimol (GABAA agonist) and baclophen (GABAB agonist). In addition, the experiments presented here revealed that bicuculline/2-hydroxysaclophen-induced in vitro theta-like activity also had a strong cholinergic M1 involvement: it was abolished by hemicholinium-3 (choline transport blocker) and pirenzepine (specific antagonist of M1 receptor), but not by gallamine (specific antagonist of M2 receptor). The results of the present study provided further evidence for a strong GABAergic/cholinergic interaction in the neural mechanism responsible for production of theta-like activity in the hippocampal formation slices.  相似文献   

13.
Intracellular recordings were performed in area CA1 pyramidal cells of rat hippocampal slices to determine the effects of certain steroids on inhibitory postsynaptic potentials/currents (IPSP/Cs) mediated by GABA(A) receptors. Following application of the steroids 5alpha-pregnan-3alpha,21-diol-20-one (5alpha-THDOC), alphaxalone and 5beta-pregnan-3alpha-ol-20-one (pregnanolone) hyperpolarizing PSPs developed into biphasic responses consisting of an early hyperpolarizing and a late depolarizing PSP sequence. Steroid-induced depolarizing PSPs could be elicited in the presence of antagonists to non-NMDA, NMDA, and GABA(B) receptors, indicating that these receptor types do not contribute significantly to the initiation of these responses. Depolarizing PSPs were completely blocked by both GABA(A) receptor antagonists bicuculline and t-butylbicyclophosphorothionat (TBPS) providing evidence for their mediation by GABA(A) receptors. The reversal potential of steroid-induced late inward PSCs, measured in single-electrode voltage clamp, was -29.9+/-5.3 mV, whereas the early outward current, which corresponded to the early hyperpolarizing component of PSPs, reversed at -68.2+/-1.5 mV. Depolarizing PSPs and late inward PSCs were sensitive to reduction of extracellular [HCO3-] and block of carbonic anhydrase by application of acetazolamide. The results suggest that certain neuroactive steroids can induce GABA(A) receptor-mediated depolarizing PSPs, which are dependent on HCO3-.  相似文献   

14.
The electrophysiological properties, the response to cholinergic agonists and the morphological characteristics of neurons of the basolateral complex were investigated in rat amygdala slices. We have defined three types of cells according to the morphological characteristics and the response to depolarizing pulses. Sixty-six of the recorded cells (71%) responded with two to three action potentials, the second onwards having less amplitude and longer duration (burst). In a second group, consisting of 21 cells (22%), the response to depolarization was a train of spikes, all with the same amplitude (multiple spike). Finally, seven neurons (7%) showed a single action potential (single spike). Burst response and multiple-spike neurons respond to the cholinergic agonist carbachol (10-20 microM) with a depolarization that usually attained the level of firing. This effect was accompanied by decreased or unchanged input membrane resistance and was blocked by atropine (1.5 microM). The depolarizing response to superfusion with carbachol occurred even when synaptic transmission was blocked by tetrodotoxin, indicating a direct effect of carbachol. Similarly, the depolarization by carbachol was still present when the M-type conductance was blocked by 2 mM Ba2+. The carbachol-induced depolarization was prevented by superfusion with tetraethylammonium (5 mM). Injection of biocytin into some of the recorded cells and subsequent morphological reconstruction showed that "burst" cells have piriform or oval cell bodies with four or five main dendritic trunks; spines are sparse or absent on primary dendrites but abundant on secondary and tertiary dendrites. This cellular type corresponds to a pyramidal morphology. The "multiple-spike" neurons have oval or fusiform somata with four or five thick primary dendritic trunks that leave the soma in opposite directions; they have spiny secondary and tertiary dendrites. Finally, neurons which discharge with a "single spike" to depolarizing pulses are round with four or five densely spiny dendrites, affording these neurons a mossy appearance. The results indicate that most of the amygdaloid neurons respond to carbachol with a depolarization. This effect was concomitant with either decrease or no change in the membrane input resistance and was not blocked by the addition of Ba2+, an M-current blocker, indicating that a conductance pathway other than K+ is involved in the response to carbachol.  相似文献   

15.
The effects of midazolam, one of the most popular benzodiazepines, on synaptic transmissions were compared with intracellular recordings between CA1 pyramidal cells (CA1-PCs) and dentate gyrus granule cells (DG-GCs) in rat hippocampal slices. First, we studied the effects of midazolam on orthodromically evoked spikes, membrane properties and synaptic potentials. Secondly, the effects of a GABA(A) receptor agonist, muscimol, were examined on membrane properties to determine whether or not the densities of GABA(A) receptors are different between CA1-PCs and DG-GCs. Midazolam (75 microM) markedly depressed orthodromically evoked spikes in CA1-PCs, compared with those in DG-GCs. A GABA(A) receptor antagonist, bicuculline (10 microM), almost completely antagonized the depressant effects of midazolam on spike generation in CA1-PCs, whereas it had little effect on midazolam in dentate gyrus granule cells. Midazolam produced either depolarizing or hyperpolarizing effects on resting membrane potentials (Vm) with an input resistance decrease in CA1-PCs, whereas it produced depolarized Vm in DG-GCs. Midazolam significantly increased the amplitude of monosynaptic inhibitory postsynaptic potentials in CA1-PCs, whereas midazolam slightly decreased these in DG-GCs. Midazolam significantly decreased the amplitude of excitatory postsynaptic potentials both in CA1-PCs and DG-GCs. Muscimol (100 microM) produced either depolarizing or hyperpolarizing effects on Vm with an input resistance decrease in CA1-PCs, and it depolarized Vm with an input resistance decrease in DG-GCs. These results demonstrate that midazolam has differential effects on excitatory and inhibitory synaptic transmissions in hippocampal neurons. The mechanism of this difference could be partly due to the different types of GABA(A) receptors between CA1-PCs and DG-GCs.  相似文献   

16.
We have studied the properties of GABA responses in oligodendrocyte-type 2 astrocyte (O-2A) progenitor cells derived from primary cultures of the neonatal rat brain. In whole cell voltage clamp recordings, rapid application of 1-10 mM GABA elicited current responses in > 85% of the cells examined. The dose-response relationship pooled from nine progenitor cells was best fit by a logistic function of EC50=113 microM and Hill coefficient=0.9. In contrast to the rate of current deactivation, the rate of current activation exhibited marked concentration-dependence. Pharmacologically, GABA, muscimol and ZAPA ((Z)-3[(aminiiminomethyl)thio]prop-2-enoic acid sulphate) produced responses with ligand-specific kinetics, whereas glycine and the GABA(C) receptor agonist CACA were without effect; bicuculline methochloride acted as a competitive antagonist. Neither the amplitude nor the kinetics of currents produced by 100 microM GABA were affected by the benzodiazepine flunitrazepam (1 microM). Similarly the benzodiazepine receptor inverse agonist DMCM (1 microM) was also without effect. GABA-activated currents reversed polarity within 2 mV of the calculated Cl- equilibrium potential. With brief agonist pulses deactivation was monoexponential, however, unlike neurones the rate of deactivation was voltage-independent. Desensitisation of responses to 10 mM GABA was bi-exponential and accelerated at depolarised membrane potentials. Increasing the amount of GABA(A) receptor desensitisation (by increasing the duration of the agonist exposure) consistently produced a slowing of deactivation.  相似文献   

17.
Perigeniculate neurons form an interactive sheet of cells that inhibit one another as well as thalamocortical neurons in the dorsal lateral geniculate nucleus (LGNd). The inhibitory influence of the GABAergic neurons of the perigeniculate nucleus (PGN) onto other PGN neurons was examined with intracellular recordings in vitro. Intracellular recordings from PGN neurons during the generation of spindle waves revealed barrages of EPSPs and IPSPs. The excitation of local regions of the PGN with the local application of glutamate resulted in activation of IPSPs in neighboring PGN neurons. These IPSPs displayed an average reversal potential of -77 mV and were blocked by application of bicuculline methiodide or picrotoxin, indicating that they are mediated by GABAA receptors. In the presence of GABAA receptor blockade, the activation of PGN neurons with glutamate could result in slow IPSPs that were mediated by GABAB receptors in a subset (40%) of cells. Similarly, application of specific agonists muscimol and baclofen demonstrated that PGN neurons possess both functional GABAA and GABAB receptors. Examination of the axon arbors of biocytin-filled PGN neurons often revealed the presence of beaded axon collaterals within the PGN, suggesting that this may be an anatomical substrate for PGN to PGN inhibition. Functionally, activation of inhibition between PGN neurons could result in a shortening or a complete abolition of the low threshold Ca2+ spike or an inhibition of tonic discharge. We suggest that the mutual inhibition between PGN neurons forms a mechanism by which the excitability of these cells is tightly controlled. The activation of a point within the PGN may result in the inhibition of neighboring PGN neurons. This may be reflected in the LGNd as a center of inhibition surrounded by an annulus of disinhibition, thus forming a "center-surround" mechanism for thalamic function.  相似文献   

18.
We combined histofluorescence with in situ hybridization to identify GABAergic neurons in the arcuate nucleus (ARC) following electrophysiological recordings, using GAD65 as a marker. Intracellular recordings were made in hypothalamic slices prepared from ovariectomized guinea pigs. Over 90% of ARC neurons tested with the GABA(B) receptor agonist baclofen responded with a membrane hyperpolarization or an outward current. The hyperpolarization was dose-dependent, and the GABA(B) receptor antagonist CGP 35,348 produced a rightward shift in the agonist dose-response curve. Agonist potency was lower, and the efficacy greater, in GAD-positive neurons. The use of this novel technique for identifying GABAergic neurons thus reveals differences in the pharmacodynamics of GABA(B) receptor activation GABAergic and non-GABAergic ARC neurons.  相似文献   

19.
Strychnine-sensitive glycine-activated currents and gamma-aminobutyric acid (GABA)-activated currents were compared in two types of neurons acutely isolated from striatal slices by vibrodissociation: large cells, presumably cholinergic giant aspiny neurons (GAN) and medium sized cells, presumed medium spiny neurons (MSN). Whole cell voltage clamp and concentration jump techniques were used. All cells responded to glycine (10-1000 microM) and GABA (2-100 microM), in MSN and GAN the maximal responses to glycine were 50 and 120% of the GABA response, respectively. GABA- and glycine- responses were additive and blocked selectively by bicuculline (1 microM) and strychnine (50 nM), respectively. These results predict the presence of alpha- and beta-subunits of the glycine receptor in the striatum.  相似文献   

20.
GABAergic neurons in the ventral tegmental area (VTA) play a primary role in local inhibition of mesocorticolimbic dopamine (DA) neurons but are not physiologically or anatomically well characterized. We used in vivo extracellular and intracellular recordings in the rat VTA to identify a homogeneous population of neurons that were distinguished from DA neurons by their rapid-firing, nonbursting activity (19.1 +/- 1.4 Hz), short-duration action potentials (310 +/- 10 microseconds), EPSP-dependent spontaneous spikes, and lack of spike accommodation to depolarizing current pulses. These non-DA neurons were activated both antidromically and orthodromically by stimulation of the internal capsule (IC; conduction velocity, 2.4 +/- 0.2 m/sec; refractory period, 0.6 +/- 0.1 msec) and were inhibited by stimulation of the nucleus accumbens septi (NAcc). Their firing rate was moderately reduced, and their IC-driven activity was suppressed by microelectrophoretic application or systemic administration of NMDA receptor antagonists. VTA non-DA neurons were recorded intracellularly and showed relatively depolarized resting membrane potentials (-61.9 +/- 1.8 mV) and small action potentials (68.3 +/- 2.1 mV). They were injected with neurobiotin and shown by light microscopic immunocytochemistry to be multipolar cells and by electron microscopy to contain GABA but not the catecholamine-synthesizing enzyme tyrosine hydroxylase (TH). Neurobiotin-filled dendrites containing GABA received asymmetric excitatory-type synapses from unlabeled terminals and symmetric synapses from terminals that also contained GABA. These findings indicate that VTA non-DA neurons are GABAergic, project to the cortex, and are controlled, in part, by a physiologically relevant NMDA receptor-mediated input from cortical structures and by GABAergic inhibition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号