首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The design of a bow-tie antenna fed by broadside-coupled striplines (BCS) for the 2.4-GHz ISM band is described. The two fins of the bow tie are, respectively, on the two sides of the substrate. The feeding balanced lines adopted are the BCS. A quarter-wave transformer is used to transform the microstrip line input to the BCS feed. An analysis method based on the mixed-potential integral equation method is used to characterize the input characteristics of the bow-tie antenna. The numerical results obtained are in good agreement with the experimental data. Through experiments with bow-tie antennas of various extended angles, the bow-tie antenna with a 90° extended angle exhibits the widest bandwidth in the desired frequency band, which has a bandwidth of 19% for a VSWR<1.5:1  相似文献   

2.
RFID系统在当今社会应用广泛,天线在RFID系统中的作用尤其重要,圆极化天线的设计大大提高了系统的灵活性和可靠性。给出了一款通用频带的特高频RFID 阅读器天线。该天线通过共面波导馈电,在介质层顶部的接地平面刻蚀方形槽,为了增加天线阻抗带宽,将共面波导馈线弯折设计;为了提升天线的圆极化性能,在槽内适当添加L 型连接线。该天线实现了410 MHz的阻抗带宽和488 MHz的轴比带宽,天线尺寸为115 mm*115 mm*0.3 mm。  相似文献   

3.
本文应用互补天线的原理,通过采用蝶形平面天线作为电偶极子,采用垂直壁与接地面作为等效磁偶极子,设计了一种新颖的蝶形宽频带天线.该天线实现了62%的相对带宽(1.52-2.89GHz,S11<-10dB),在工作频段内具有稳定的波瓣图,优于-30dB的交叉极化和超过18dB的前后比.  相似文献   

4.
基于FR4环氧板,设计了一种可用于体域网的非对称共面波导馈电的超宽带天线。该天线由Y型贴片、梯形地板和三叉戟共面馈线组成。Y型贴片、圆形贴片、三角形贴片实现4~5 GHz的中低频处带宽小于-10 d B的效果,梯形地板和三叉戟共面馈线实现7~14 GHz的高频处带宽小于-10 d B的效果。该天线采用非对称共面波导的馈电方式,具有良好的共面性与高度的集成性,使得天线的总体尺寸更小,辐射贴片的面积为22 mm×21 mm。与以往的小型化超宽带天线相比,该天线具有尺寸更小、带宽更宽的优势。经网络矢量分析仪测试结果表明,该天线在2. 14~11. 32 GHz的超宽带频段内回波损耗小于-10 d B(相对带宽为136. 4%),可适用于2. 4/5. 2/5. 8 GHz无线局域网、3. 5/5. 5 GHz WiMAX、LTE频段38和LTE频段40。同时,该天线距离人体大于5 mm时的比吸收率(SAR)小于2 W/kg,满足国际标准。  相似文献   

5.
针对超宽带通信系统,提出一种小型超宽带天线,可以应用于终端设备。天线类型为共面波导馈电的缝隙型,缝隙结构为一矩形与一圆形组合而成,馈电结构与缝隙结构相似。天线的面积为22 mm×27 mm,印刷在厚度为0. 5 mm的FR4衬底上. 通过软件仿真分析了天线的工作原理以及尺寸对带宽的影响,仿真结果显示天线的带宽在不同的衬底厚度下均能覆盖UWB频段。天线的测试带宽为2.4 GHz~14.4 GHz,在超宽带的工作频段内测试效率超过76% ,测试增益大于2.1 dBi。  相似文献   

6.
提出了一种工作频率为914MHz的印刷偶极子天线。为了使天线获得宽带特性和平衡馈电,采用了微带线到共面带状线的巴伦馈电。仿真表明天线在830MHz~1030MHz左右范围内,回波损耗低于-10dB,相对带宽可达22%。在中心工作频点上,该天线具有良好的回波损耗,可达-50dB。且结构简单,易于制作和集成,可用于相关的无线数据采集系统中。  相似文献   

7.
An ultrawideband coplanar waveguide-fed tapered ring slot antenna   总被引:1,自引:0,他引:1  
In this paper, we present a new coplanar waveguide-fed tapered ring slot antenna for ultrawideband (UWB) applications. This antenna consists of a 50 /spl Omega/ coplanar waveguide feeding line, wideband coplanar waveguide-to-slotline transition, and a pair of curved radiating slots. The impedance bandwidth with VSWR<2 is from 3.1 GHz to more than 12 GHz. The actual operating bandwidth is, however, limited by the distortion of radiation patterns. Such pattern distortion can be attributed to the antenna mode transition and is investigated in this paper with the help of the radiation patterns in the traditional sense as well as a dimensionless normalized antenna transfer function. By suitably allocating such mode-transition phenomenon to the notched band in a UWB radio, we demonstrate that antennas with desirable radiation characteristics in both UWB low and high bands can be readily achieved. The system responses of a transceiving antenna system in free space are addressed as well.  相似文献   

8.
Broadband CPW-fed folded-slot monopole antenna for 5.8 GHz RFID application   总被引:1,自引:0,他引:1  
Liu  W.-C. Hu  Z.-K. 《Electronics letters》2005,41(17):937-939
A folded slot is introduced to expand the impedance bandwidth and miniaturise the size of a coplanar waveguide (CPW)-fed patch monopole antenna for radio frequency identification (RFID) applications. The designed antenna, which, including ground plane, is only 13 mm in height and 11 mm in width, can operate at the 5.8 GHz band with measured impedance bandwidth and average antenna gain of 30% and /spl ges/5 dBi, respectively, and also conical radiation patterns. These properties make the antenna suitable for RFID tags.  相似文献   

9.
安叶 《无线电工程》2010,40(8):39-41
传统形式上的微带贴片天线虽具有体积小、重量轻的特点,但窄带特性却制约了其工程应用的范围。在对曲边蝶形天线结构和特性理论分析的基础上,使用Ansoft公司的HFSS三维电磁场软件对其进行建模仿真,最终优化得出了在0.8~3.0GHz宽频带范围内都具有良好的辐射特性,且在工作带宽内VSWR<1.5的曲边蝶形微带天线,在小型化的基础上实现了微带天线的宽频带特性。  相似文献   

10.
面向超高频(UHF)通用型射频识别(RFID)读写器天线的应用需求,设计了一款完全覆盖全球UHF(840-960MHz)频段的RFID圆极化读写器天线。天线采用平面缝隙贴片结构,以共面波导(CPW)馈电方式实现宽频带圆极化特性。测试结果表明,天线的阻抗带宽为735-1014MHz(S11<-10dB),相对带宽31.9%,并且在840-960MHz频段内S11<-20dB,3dB轴比带宽为838-1134MHz,相对带宽30.0%,工作频带内有大于3.5dBi的平坦增益。仿真结果与测试结果基本吻合,天线结构精简,易于加工,满足全球UHF RFID读写器天线的应用需求。  相似文献   

11.
A two-element bow-tie dipole antenna and a single-element bow-tie slot antenna fabricated on a high dielectric constant (εr=10.2) substrate are introduced for applications at millimetre-wave frequencies. The former antenna provides 2 GHz bandwidth at 35 GHz and the latter 1.3 GHz at 32.7 GHz. With a broadband match, these antennas would yield significantly higher bandwidths  相似文献   

12.
摘 要:带宽拓展,一直以来是介质谐振器天线研究重要内容之一。基于此,本文设计了一款宽频带介质谐振器天线。采用共面波导馈电的单极天线与介质谐振器天线的混合结构,通过调节谐振器尺寸和共面波导的结构,使各个工作模式的频带互相重叠,展宽所设计天线的带宽;同时地板上引入开槽技术,对馈线进行阻抗匹配。利用仿真软件对天线参数进行优化仿真,实现天线频带宽度为2.98-7.18GHz(S11<-10dB),相对带宽达到84.3%,带内最大增益达到4.9dBi。对该天线进行加工测试,仿真与测试基本吻合,结果表明,该天线不仅可实现宽频带,且结构简单,尺寸小,易集成,可广泛应用于WLAN/WIMAX等通信领域。  相似文献   

13.
A new wide-band high-efficiency coplanar waveguide-fed printed loop antenna is presented for wireless communication systems in this paper. By adjusting geometrical parameters, the proposed antenna can easily achieve a wide bandwidth. To optimize the antenna performances, a parametric study was conducted with the aid of a commercial software, and based on the optimized geometry, a prototype was designed, fabricated, and tested. The simulated and measured results confirmed that the proposed antenna can operate at (1.68-2.68 GHz) band and at (1.46-2.6 GHz) band with bandwidth of 1 and 1.14 GHz, respectively. Moreover, the antenna has a nearly omnidirectional radiation pattern with a reasonable gain and high efficiency. Due to the above characteristics, the proposed antenna is very suitable for applications in PCS and IMT2000 systems.  相似文献   

14.
A coplanar waveguide (CPW) fed ultra-wideband (UWB) antenna with a notch band characteristic is presented for 2.4 GHz and UWB applications. The bandwidth is broadened by embedding two inverted L-shaped slots in the CPW ground and the notch band is achieved by etching a rectangle slot in the CPW ground. The notched band can be controlled by adjusting the length of the rectangle slot and the two inverted L-shaped slots. Experimental and numerical results show that the proposed antenna with compact size of 28 × 21 mm2, has an impedance bandwidth range from 2.38 GHz to 12.0 GHz for voltage standing-wave ratio (VSWR) less than 2, expect the notch band frequency 5.0–6.0 GHz for HIPERLAN/2, IEEE 802.11a (5.1–5.9 GHz) and C-band (4.4–5 GHz) for satellite and military applications.  相似文献   

15.
设计了一种以柔性材料聚二甲基硅氧烷(PDMS)为介质基片的超宽带(UWB)天线,其辐射单元由矩形和半圆环金属贴片组成,两部分结构由带状贴片连接,采用共面波导方式馈电。上述金属贴片嵌入在PDMS基片中间,用于人体通信的可穿戴系统。利用嵌入式结构,有效提高了天线的柔韧性和耐用性。为了更好地模拟天线在人体表面的工作环境,构建了包括皮肤、脂肪和肌肉的三层人体组织模型,满足人体安全的国际标准的最大天线比吸收率值为16.4 mW。最后对天线样品进行测试,结果表明天线总体性能稳定,阻抗带宽为5.39-10.33 GHz,实现了在医学机构使用的频段(5.725-5.875 GHz)要求。  相似文献   

16.
CPW-fed slot-loop coupled patch antenna on narrow substrate   总被引:3,自引:0,他引:3  
A coplanar waveguide (CPW) fed rectangular patch antenna excited by a rectangular slot-loop is designed for use in the 2.4 GHz ISM band. The size of the slot-loop is chosen to be as close to that of the patch as possible, and the substrate is cut to be as narrow as possible. Experimental results show that this antenna has a nearly omnidirectional pattern in the H-plane and a bandwidth of ~22% for VSWR<2  相似文献   

17.
提出了一种应用于便携设备中具有带陷特性的平面蝶形UWB天线.该天线采用蝶形贴片作为辐射单元,并由渐变线作为阻抗变换器与50 Ω馈线进行匹配.通过在辐射面上挖C形槽实现带陷功能,并给出仿真和实测结果.该天线的工作频带覆盖3.1~10.6 GHz,并有效避免了5.15~5.825 GHz的无线局域网(WLAN)频段,适于便...  相似文献   

18.
A novel monopole antenna with wide impedance bandwidth and axial ratio bandwidth (ARBW) is presented. The proposed structure is consisting of a wide slot hexagonal shape with an L-shaped radiator coupled inside the slot. Further, two inverted L-shaped strips are protruded on the opposite corners of the hexagonal patch for better radiation capability. The radiating patch is fed by a semi hexagonal ring feed mechanism followed by a tapered line coplanar waveguide (CPW) for improving antenna performance. The proposed structure is supported by a triangular shaped ground plane. An extremely wide -10 dB impedance bandwidth of around 195% and 3-dB axial ratio bandwidth of 32.5% is achieved. The designed antenna has stable radiation characteristics within the operating band. Proposed antenna is fabricated on FR4 epoxy substrate by means of standard photolithography process and measured results are found in a good match with simulated.  相似文献   

19.
In this paper, a compact coplanar waveguide (CPW) fed ultra-wide band (UWB) multi input multi output (MIMO) antenna is proposed. The antenna consists of two antiparallel hexagonal ring monopole elements. Circular arcs shaped grounded stubs are used to enhance the isolation, both the arcs are connected through stub to make common ground. Tapering of the slots of CPW feed line at feed point, and grounded slots are introduced for impedance matching over UWB. The proposed antenna is fabricated and impedance bandwidth, isolation, radiation pattern, and gain are measured. Moreover, envelop correlation coefficient (ECC) results are given. Proposed antenna structure operates in the frequency range 3–12 GHz with a fractional bandwidth of 120% keeping isolation better than 15 dB. The antenna has a compact size of 45 × 25 mm2.  相似文献   

20.
A coplanar waveguide (CPW) fed ultra wideband slot antenna with reconfigurable band rejection characteristics is presented. Ultra wide bandwidth of 3.01–10.6 GHz is achieved by exciting the rectangular slot antenna with C-shaped stub. Band notch characteristic is changed between WLAN and WiMAX band by the integrated switches placed across the half wavelength slot. The performance of the proposed antenna is investigated numerically and experimentally. Experimental results demonstrate that the antenna exhibits omni directional characteristics with the peak gain of 4.9 dB and a gain variation of less than 2 dB across the operating band.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号