首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到6条相似文献,搜索用时 0 毫秒
1.
1. INTRODUCTIONTurbulent flows with heat transfer in rotatingframe exist in a variety of industrial , geophysicaland astrophysical applications . The rotation in-duces additional body forces ,i .e .,centrifugal andCoriolis forces , acting on the turbulent…  相似文献   

2.
Turbulent open channel flows subjected to the control of a spanwise traveling wave have been investigated by means of Direct Numerical Simulation(DNS).The objective of this study is to reveal the response of the near-wall and surface-influenced turbulence to the spanwise traveling wave control.Three typical frequencies of the spanwise traveling wave,i.e.,high-,middle-and low-frequency,corresponding to the exciting periods at 25,50 and 100,are considered to study the turbulence dynamics in the wall and surface regions.To elucidate the behaviors of turbulence statistics,some typical quantities,including the mean velocity,velocity fluctuations and the structures of turbulence fluctuations,are exhibited and analyzed.  相似文献   

3.
A fluid-structure interaction method based on the arbitrary Lagrangian-Eulerian method and a dynamic mesh method was developed to simulate the dynamics of a rigid particle in shear flows. In the method, the governing equations for the fluid flow and particle motion were sequentially solved in a two-way coupling fashion. The mesh system was deformed or re-meshed by the dynamic mesh method. The method was employed to simulate the dynamics of a single particle suspended in a flow channel and the dynamics of the particle were studied. The simulation results show that the angular velocity is not only a function of the inclination angle, is but also influenced by the aspect ratio yielding a hysteresis, while the angular velocity obtained from the Keller-Scalak model is a function only of the inclination angle and does not show a hysteresis. The present simulations clearly demonstrate that the Fluid-Structure Interaction (FSI) module is very stable, accurate and robust.  相似文献   

4.
Large Eddy Simulation (LES) of fully developed turbulent channel flow with heat transfer was performed to investigate the effects of the Reynolds number on the turbulence behavior. In the present study, the bottom wall of the channel was cooled and the top wall was heated. The Reynolds numbers, based on the central mean-velocity and the half-width of the channel, were chosen as 4000, 6000, 104 and 2×104, and the Prandtl number as 1.0. To validate our calculations, the present results were compared with available data obtained by Direct Numerical Simulation (DNS), which proves to be in good agreement with each other. To reveal the effects of the Reynolds number, some typical quantities, including the velocity fluctuations, temperature fluctuation, heat fluxes and turbulent Prandtl number, were studied.  相似文献   

5.
Thermally-stratified shear turbulent channel flow with temperature oscillation on the bottom wall of the channel was investigated with the Large Eddy Simulation (LES) approach coupled with dynamic Sub-Grid-Scale (SGS) models. The effect of temperature oscillation on the turbulent channel flow behavior was examined. The phase-averaged velocities and temperature, and flow structures at different Richardson numbers and periods of the oscillation was analyzed.  相似文献   

6.
The separated turbulent flow around a circular cylinder is investigated using Large-Eddy Simulation (LES), Detached-Eddy Simulation (DES, or hybrid RANS/LES methods), and Unsteady Reynolds-Averaged Navier-Stokes (URANS). The purpose of this study is to examine some typical simulation approaches for the prediction of complex separated turbulent flow and to clarify the capability of applying these approaches to a typical case of the separated turbulent flow around a circular cylinder. Several turbulence models, i.e. dynamic Sub-grid Scale (SGS) model in LES, the DES-based Spalart-Allmaras (S-A) and k ? ω Shear-Stress-Transport (SST) models in DES, and the S-A and SST models in URANS, are used in the calculations. Some typical results, e.g., the mean pressure and drag coefficients, velocity profiles, Strouhal number, and Reynolds stresses, are obtained and compared with previous computational and experimental data. Based on our extensive calculations, we assess the capability and performance of these simulation approaches coupled with the relevant turbulence models to predict the separated turbulent flow.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号