首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 895 毫秒
1.
Several concentration of Yb-doped Lu3Al5O12 (Yb:LuAG) and Lu3Ga5O12 (Yb:LGG) single crystals were grown by the micro-pulling-down method. The crystals were seeded-grown in the 1 1 1 direction and transparent and crack free crystals were obtained. Photoluminescence spectra and decay kinetics of these crystals were studied. Charge transfer luminescence of Yb3+ was observed in both crystals. Mean decay time of about 25 ns at 90 K and strong thermal quenching at room temperature was measured for Yb 5%:LuAG. Radioluminescence intensity was compared to the standard BGO sample.  相似文献   

2.
Shaped single crystals of (Yb0.05LuxGd0.95−x)Ga5O12 (0.0x0.9) and Yb0.15Gd0.15Lu2.7(AlxGa1−x)O12 (0.0x1.0) were grown by the modified micro-pulling-down method. Continuous solid solutions with garnet structure and a linear compositional dependency of crystal lattice parameter in the system Yb:(Gd,Lu)3(Ga,Al)5O12 are formed. Measured optical absorption spectra of the samples show 4f–4f transitions related to Gd3+ ion at 275 and 310 nm, and also an onset of charge transfer transitions from oxygen ligands to Gd3+ or Yb3+ cations below 240 nm. A complete absence of Yb3+ charge transfer luminescence under X-ray excitation in any of the investigated samples was explained by the overlapping of charge transfer absorption of Yb3+ by that of Gd3+ ions. For specific composition of Lu1.5Gd1.5Ga5O12 an intense defect––host lattice-related emission, which achieve of about 40% integrated intensity compared with Bi4Ge3O12, was found.  相似文献   

3.
《Optical Materials》2013,35(12):2080-2085
The work is dedicated to growth by the liquid phase epitaxy method and study of the luminescence and scintillation properties of Sc3+ doped single crystalline films (SCF) of Lu3Al5O12 (LuAG) garnet. The scintillation properties of SCF are compared with single crystal (SC) analogues grown by the Horizontal Direct Crystallization and Czochralski methods. We consider the dependence of intensity of the Sc3+ emission in LuAG host on the activator concentration and influence of flux contamination on the light yield (LY) of the Sc3+ luminescence in LuAG:Sc SCF with respect to their SC counterparts and the reference YAP:Ce scintillator. From the NMR investigations of LuAG:Sc SCF we confirm the substitution by Sc3+ ions both the octahedral and dodecahedral positions of LuAG host and formation of the ScAl and ScLu related emission centers, respectively. We also show that the luminescence spectrum in the UV range and decay kinetics of LuAG:Sc SCF can be effectively tuned by changing the scandium content.  相似文献   

4.
Data are presented on the spectroscopic properties of Yb3+-activated NaGd(WO4)2, a disordered scheelite-like tungstate potentially attractive as a gain medium. NaGd(WO4)2:Yb3+ crystals are grown by the Czochralski technique. The polarized absorption and luminescence spectra and the luminescence decay kinetics of oriented samples with different Yb3+ concentrations are studied at 300 K. The gain coefficients are calculated for different populations of the upper lasing level 2F 5/2 of the Yb3+ ion.  相似文献   

5.
Highly transparent single crystals of (BaF2)1?x (Y,LnF3)x′ with Ln = Yb, Nd, are grown by the Bridgman technique. Lattice parameter variations are given, and the compensation by interstitial fluorine ions of the structure is verified from the crystal density.  相似文献   

6.
Dilute Al-0.06 at.% Sc alloys with microalloying additions of 50 at. ppm of ytterbium (Yb) or gadolinium (Gd) are studied with 3D local-electrode atom-probe (LEAP) tomography for different aging times at 300 °C. Peak-aged alloys exhibit Al3(Sc1−x Yb x ) or Al3(Sc1−x Gd x ) precipitates (L12 structure) with a higher number density (and therefore higher peak hardness) than a binary Al-0.06 at.% Sc alloy. The Al–Sc–Gd alloy exhibits a higher number density of precipitates with a smaller average radius than the Al–Sc–Yb alloy, leading to a higher hardness. In the Al–Sc–Gd alloy, only a small amount of the Sc is replaced by Gd in the Al3(Sc1−x Gd x ) precipitates, where x = 0.08. By contrast, the hardness incubation time is significantly shorter in the Al–Sc–Yb alloy, due to the formation of Yb-rich Al3(Yb1−x Sc x ) precipitates to which Sc subsequently diffuses, eventually forming Sc-rich Al3(Sc1−x Yb x ) precipitates. For both alloys, the precipitate radii are found to be almost constant to an aging time of 24 h, although the concentration and distribution of the RE elements in the precipitates continues to evolve temporally. Similar to microhardness at ambient temperature, the creep resistance at 300 °C is significantly improved by RE microalloying of the binary Al-0.06 at.% Sc alloy.  相似文献   

7.
Up-converting yttrium oxysulfide nanomaterials doped with ytterbium and erbium (Y2O2S:Yb3+,Er3+) were prepared with the flux method. The precursor oxide materials were prepared using the combustion synthesis. The morphology of the oxysulfides was characterized with transmission electron microscopy (TEM). The particle size distribution was 10–110 nm, depending on the heating temperature. According to the X-ray powder diffraction (XPD), the crystal structure was found hexagonal and the particle sizes estimated with the Scherrer equation agreeded with the TEM images. Upon the 970 nm infrared (IR) laser excitation, the materials yield moderate green ((2H11/2, 4S3/2) → 4I15/2 transition) and strong red (4F9/2 → 4I15/2) luminescence. The green luminescence was enhanced with respect to the red one by an increase in both the crystallite size and erbium concentration due to the cross-relaxation (CR) processes. The most intense up-conversion luminescence was achieved with xYb and xEr equal to 0.10 and 0.005, respectively. Above these concentrations, concentration quenching occurred.  相似文献   

8.
Single crystal of erbium, ytterbium-codoped yttrium aluminum tetraborate Er,Yb:YAl3(BO3)4(Er,Yb:YAB) has been grown by the flux method. The absorption spectrum in the visible and NIR regions of Er,Yb:YAl3(BO3)4 crystal are measured at room temperature and fluorescence spectrum of Er,Yb:YAl3(BO3)4 crystal are also measured at room temperature, excited by 976 nm laser. Not only the strong NIR emission peaks located at 1548 nm was observed, but also the visible up-conversion luminescence has been found. The specific heat of the Er/Yb:YAB crystal at room temperature is 0.81 J/g °C.  相似文献   

9.
The thermal expansion and electroabsorption of TlIn1 – x Yb x S2 solid solutions were measured as a function of temperature. The introduction of Yb into TlInS2 was found to fully suppress the phase transition. It is shown that there is a perfect correlation between the band gap and thermal expansion of the TlIn1 – x Yb x S2 solid solutions: both decrease with increasing Yb content. This finding is interpreted in terms of the effect of Yb substitution on bond strength.  相似文献   

10.
NaBi1−xYbx(WO4)2 fibres single crystals were successfully grown by micro-pulling down technology (MPD). The Yb3+-doped NaBi(WO4)2 fibres single crystals have been pulled using MPD technique with controlled diameter and stationary stable growth conditions corresponding to flat crystallization interface with meniscus length equal to the fibre radii and pulling rate range [6-48 mm h−1]. We have determined the monophased field of NaBi1−xYbx(WO4)2 for x ≤ 0.3. The lattices parameters decrease as a function of Yb3+ substitution in Bi3+ sites. The melt behaviour has been study by DTA/TG analysis. We have found that the stoichiometric compounds NaBi(WO4)2 melt congruently at 935 °C. The fibre diameters varied from 0.5 to 1 mm depending on the capillary die diameter, pulling rate and the molten zone temperature. Complementary Yb3+ spectroscopic characterization in the NaBi(WO4)2 lattice has been done by IR emission measurements under laser pumping at room temperature.  相似文献   

11.
《Materials Letters》2004,58(1-2):159-162
Yb3+-doped PbWO4 single crystal was grown using modified vertical Bridgman method. X-ray diffraction (XRD) analysis, optical absorption spectra, X-ray excited luminescence (XEL), fluorescence of 2F5/22F7/2 and its lifetime at room temperature were investigated. PWO:Yb3+ shows the broad absorption of Yb3+ (850–1050 nm) and efficient emission (950–1100 nm). Annealing exerts a distinct influence on the PWO:Yb3+ crystal, e.g. disappearance of color and annihilation of the absorption in the region around 450–750 nm, meanwhile the absorption of Yb3+ ions was enhanced by the annealing treatment. A novel luminescence band on the X-ray excited luminescence spectra of PWO:Yb3+ centered at about 500 nm was observed overlapped on that of PWO host.  相似文献   

12.
This paper presents experimental data on the solubility of Yb(III) compounds in POCl3–MCl x , SOCl2–MCl x , and SO2Cl2–GaCl3 binary aprotic solvents (where MClx is a Lewis acid). We have measured the absorption and luminescence spectra of Yb3+ in the solutions thus prepared. Liquid POCl3–MCl4–Yb3+ (M = Zr or Sn), SOCl2–GaCl3–Yb3+, and SO2Cl2–GaCl3–Yb3+ gain media with [Yb3+] > 0.2 mol/L and an Yb3+ luminescence quantum yield η > 0.5 for diode-pumped lasers have been prepared for the first time.  相似文献   

13.
The luminescence and scintillation properties of SrI2:0.5%Yb2+ have been investigated. SrI2:Yb single crystals were grown by the vertical Bridgeman method from the melt. They showed a light yield of 38,400 ph/MeV and energy resolution of 12.5% for the 662 keV full absorption peak. Yb2+ photoluminescence intensity and decay time were studied between 78 and 600 K. Two emission bands centered at 418 and 446 nm were observed and ascribed to spin-allowed and spin-forbidden Yb2+ 5d-4f transitions, respectively. Their corresponding room-temperature decay time constants are 710 ns and 77 μs. Both, the emission intensities and the decay time constants vary with temperature. The obtained results were interpreted using a model of self-absorption of Yb2+ emission and a model of non-radiative relaxation of the electron from the low spin to the high spin 4f135d Yb2+ excited states. The radiative lifetime of the low spin Yb2+ excited state was determined as 400 ns.  相似文献   

14.
We have taken advantage of congruent melting behavior of the nonlinear rare-earth oxoborate Ca4REO(BO3)3 family to perfect a process of collective fabrication of self-frequency doubling microchip laser based on Nd:GdCOB (Ca4Gd1−xNdxO(BO3)3) crystals. The process goes from Czochralski boule to 1 × 3 mm2 chips perfectly oriented (better than 0.1°) to the phase matching direction (θ=90°, φ=46°) in the XY principal plane, with dielectric mirrors directly deposited on both faces of the chips. 20 mW of self-frequency doubling output power at 530 nm was performed under 800 mW of diode laser as incident pump power at 812 nm. In addition, new compositions from the solid solution Ca4Gd1−xYxO(BO3)3 (Gd1−xYxCOB) (x=0.13, 0.16, 0.44) have been grown by the Czochralski pulling method, in order to achieve noncritical phase matching (NCPM) second harmonic generation of 4F3/2 → 4I9/2 Nd3+ doped laser hosts. Three types of laser wavelengths have been chosen: Nd:YAP (YAlO3) at 930 nm, Nd:YAG (Y3Al5O12) at 946 nm, and Nd:ASL (NdySr1−x LaxyMgx Al12−xO19) at 900 nm. Angular acceptance measurements of these three types of compositions present very large values, compared to pure GdCOB or YCOB oriented in critical phase matching configurations.  相似文献   

15.
Lead borate glass samples doped with the tripositive lanthanide ions Pr3+ and Yb3+ were synthesized by the conventional melting-quenching method. The luminescence properties and energy transfer process from Pr3+ to Yb3+ were investigated. Upon ultraviolet excitation, the room temperature luminescence decay curve of a sample containing only a low concentration of Pr3+ exhibited monoexponential decay from 1D2 with the lifetime 37 μs, without emission from 3P0. The room temperature Pr3+ emission intensity decreased with the increase of Yb3+ mole ratio in the glass. Under the excitation of 454.5 nm at 10 K, a broad red emission band centered at 605 nm, and an NIR emission band at 995 nm were observed in the co-doped lead borate glass, originating from Pr3+ and Yb3+ ions, respectively. The decay curves of the 1D2 emission from Pr3+ with addition of Yb3+ in lead borate glass show non-monoexponential character, and are best described by a stretched exponential function. The average 1D2 decay time decreases considerably with the addition of Yb3+ in the glass. Decay curve fitting using a modified Inokuti-Hirayama expression indicates dipole-dipole energy transfer from Pr3+ to Yb3+, which is consistent with the expected cross-relaxation scheme. There is a good agreement of the estimated overall energy transfer efficiency obtained from the integrals under the normalized decay curves, or from the lifetimes fitted by the stretched exponential function, or from the average decay times.  相似文献   

16.
Transparent oxyfluoride borosilicate glass ceramics containing Ba2+1.5xYb1−xF7:Tb3+ nanocrystals were successfully prepared by a melt-quenching method with subsequent heat treatment. The precipitated crystalline phase in the glass matrix changed gradually from BaF2 to Ba2+1.5xYb1−xF7 with the increase of YbF3 content, which was confirmed by the results of XRD, HRTEM and EDX measurements. The ultraviolet and visible up-conversion and near-infrared quantum cutting down-conversion emissions were observed and interpreted. These materials could be used to modify the solar spectrum and enhance the silicon solar cell efficiency by the up-conversion and down-conversion luminescence of Tb3+–Yb3+ couples in the oxyfluoride borosilicate glass ceramics.  相似文献   

17.
Single crystals of rhenium doped tungsten diselenide i.e. RexW1−xSe2 (x = 0, 0.0005, 0.001, 0.05, 0.1) are grown by vapour phase technique. The stoichiometry of grown single crystals is confirmed by energy dispersive analysis of X-rays. X-ray powder diffractograms obtained of these compounds were used for lattice parameter determination based on hexagonal system similar to that of host WSe2.The crystallite size for each sample for different reflection is calculated using Scherrer's formula. Surface morphology as observed under optical microscope reflects that screw dislocation mechanism is responsible for growth of crystals. Electrical properties viz. Hall effect at room temperature, resistivity measurements at low temperature, and high pressure resistivity measurements indicates the semiconducting behaviour of RexW1−xSe2 (x = 0, 0.0005, 0.001, 0.05, 0.1) single crystals. Thermoelectric power measurements shows p-type nature of host WSe2 whereas n-type nature of rhenium doped WSe2 which matches with the results of Hall effect.  相似文献   

18.
掺Yb3+闪烁晶体是新近发展起来的一类闪烁体,有可能用于探测太阳中微子.本文简要介绍了掺Yb3+闪烁晶体的电荷迁移发光的机理以及基质晶体对温度猝灭与浓度猝灭的影响.综述了具有石榴石结构和钙钛矿结构的两类掺Yb3+闪烁晶体的研究进展,特别是YbYAG和YbYAP晶体的生长、闪烁性能以及应用前景.最后,对掺Yb3+闪烁晶体的未来研究方向做了展望.  相似文献   

19.
The absorption and luminescence spectra of Yb3+ and the luminescence decay kinetics for the Yb3+ 2 F 5/2 level in YVO4:Yb3+ crystals are studied. The luminescence cross section for the Yb3+ 2 F 5/2 2 F 7/2transition in YVO4:Yb3+ is determined by the Füchtbauer–Ladenburg method, and the radiative lifetime of Yb3+ is evaluated.  相似文献   

20.
The valence of the europium dopant and selected rare earth co-dopants (Ce3+, Dy3+, and Yb3+) in the Sr2MgSi2O7:Eu2+,R3+ persistent luminescence materials were studied by room temperature XANES measurements. The results indicated the co-existence of both divalent and trivalent europium in all the studied materials. The relative amount of Eu3+ was observed to increase upon increasing exposure to X-rays, as expected by the persistent luminescence mechanism. This suggests a simultaneous filling of oxygen vacancies initially created by the reducing preparation conditions. For the Dy and Yb co-dopants, only trivalent species were observed. On the other hand, traces of tetravalent cerium were present in the Eu,Ce co-doped materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号