首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A novel electrostatic discharge (ESD) protection circuit, which combines complementary low-voltage-triggered lateral SCR (LVTSCR) devices and the gate-coupling technique, is proposed to effectively protect the thinner gate oxide of deep submicron CMOS ICs without adding an extra ESD-implant mask. Gate-coupling technique is used to couple the ESD-transient voltage to the gates of the PMOS-triggered/NMOS-triggered lateral silicon controlled rectifier (SCR) (PTLSCR/NTLSCR) devices to turn on the lateral SCR devices during an ESD stress. The trigger voltage of gate-coupled lateral SCR devices can be significantly reduced by the coupling capacitor. Thus, the thinner gate oxide of the input buffers in deep-submicron low-voltage CMOS ICs can be fully protected against ESD damage. Experimental results have verified that this proposed ESD protection circuit with a trigger voltage about 7 V can provide 4.8 (3.3) times human-body-model (HBM) [machine-model (MM)] ESD failure levels while occupying 47% of layout area, as compared with a conventional CMOS ESD protection circuit  相似文献   

2.
The turn-on mechanism of a silicon-controlled rectifier (SCR) device is essentially a current triggering event. While a current is applied to the base or substrate of the SCR device, it can be quickly triggered into its latching state. In this paper, a novel design concept to turn on the SCR device by applying the substrate-triggered technique is first proposed for effective on-chip electrostatic discharge (ESD) protection. This novel substrate-triggered SCR device has the advantages of controllable switching voltage and adjustable holding voltage and is compatible with general CMOS processes without extra process modification such as the silicide-blocking mask and ESD implantation. Moreover, the substrate-triggered SCR devices can be stacked in ESD protection circuits to avoid the transient-induced latch-up issue. The turn-on time of the proposed substrate-triggered SCR devices can be reduced from 27.4 to 7.8 ns by the substrate-triggering technique. The substrate-triggered SCR device with a small active area of only 20 /spl mu/m /spl times/ 20 /spl mu/m can sustain the HBM ESD stress of 6.5 kV in a fully silicided 0.25-/spl mu/m CMOS process.  相似文献   

3.
Turn-on speed is the main concern for an on-chip electrostatic discharge (ESD) protection device, especially in the nanoscale CMOS processes with ultrathin gate oxide. A novel dummy-gate-blocking silicon-controlled rectifier (SCR) device employing a substrate-triggered technique is proposed to improve the turn-on speed of an SCR device for using in an on-chip ESD protection circuit to effectively protect the much thinner gate oxide. The fabrication of the proposed SCR device with dummy-gate structure is fully process-compatible with general CMOS process, without using an extra mask layer or adding process steps. From the experimental results in a 0.25-/spl mu/m CMOS process with a gate-oxide thickness of /spl sim/50 /spl Aring/, the switching voltage, turn-on speed, turn-on resistance, and charged-device-model ESD levels of the SCR device with dummy-gate structure have been greatly improved, as compared to the normal SCR with shallow trench isolation structure.  相似文献   

4.
The turn-on mechanism of silicon-controlled rectifier (SCR) devices is essentially a current triggering event. While a current is applied to the base or substrate of an SCR device, it can be quickly triggered on into its latching state. In this paper, latchup-free electrostatic discharge (ESD) protection circuits, which are combined with the substrate-triggered technique and an SCR device, are proposed. A complementary circuit style with the substrate-triggered SCR device is designed to discharge both the pad-to-V/sub SS/ and pad-to-V/sub DD/ ESD stresses. The novel complementary substrate-triggered SCR devices have the advantages of controllable switching voltage, adjustable holding voltage, faster turn-on speed, and compatible to general CMOS process without extra process modification such as the silicide-blocking mask and ESD implantation. The total holding voltage of the substrate-triggered SCR device can be linearly increased by adding the stacked diode string to avoid the transient-induced latchup issue in the ESD protection circuits. The on-chip ESD protection circuits designed with the proposed complementary substrate-triggered SCR devices and stacked diode string for the input/output pad and power pad have been successfully verified in a 0.25-/spl mu/m salicided CMOS process with the human body model (machine model) ESD level of /spl sim/7.25 kV (500 V) in a small layout area.  相似文献   

5.
A new ESD protection circuit with complementary SCR structures and junction diodes is proposed. This complementary-SCR ESD protection circuit with interdigitated finger-type layout has been successfully fabricated and verified in a 0.6 μm CMOS SRAM technology with the LDD process. The proposed ESD protection circuit can be free of VDD-to-VSS latchup under 5 V VDD operation by means of a base-emitter shorting method. To compensate for the degradation on latching capability of lateral SCR devices in the ESD protection circuit caused by the base-emitter shorting method, the p-well to p-well spacing of lateral BJT's in the lateral SCR devices is reduced to lower its ESD-trigger voltage and to enhance turn-on speed of positive-feedback regeneration in the lateral SCR devices. This ESD protection circuit can perform at high ESD failure threshold in small layout areas, so it is very suitable for submicron CMOS VLSI/ULSI's in high-pin-count or high-density applications  相似文献   

6.
This paper presents a new electrostatic discharge (ESD) protection design for input/output (I/O) cells with embedded silicon-controlled rectifier (SCR) structure as power-rail ESD clamp device in a 130-nm CMOS process. Two new embedded SCR structures without latchup danger are proposed to be placed between the input (or output) pMOS and nMOS devices of the I/O cells. Furthermore, the turn-on efficiency of embedded SCR can be significantly increased by substrate-triggered technique. Experimental results have verified that the human-body-model (HBM) ESD level of this new proposed I/O cells can be greater than 5 kV in a 130-nm fully salicided CMOS process. By including the efficient power-rail ESD clamp device into each I/O cell, whole-chip ESD protection scheme can be successfully achieved within a small silicon area of the I/O cell.  相似文献   

7.
Electrostatic discharge (ESD) protection design for high-speed input/output (I/O) interface circuits in a 130-nm CMOS process is presented in this paper. First, the ESD protection diodes with different dimensions were designed and fabricated to evaluate their ESD levels and parasitic effects in gigahertz frequency band. With the knowledge of the dependence of device dimensions on ESD robustness and the parasitic capacitance, whole-chip ESD protection scheme were designed for the general receiver and transmitter interface circuits. Besides, an ESD protection scheme is proposed to improve the ESD robustness under the positive-to-VSS (PS-mode) ESD test, which is the most critical ESD-test pin combination. With a silicon-controlled rectifier (SCR) between the I/O pad and VSS, the clamping voltage along the PS-mode ESD current path can be reduced, so the PS-mode ESD level can be improved. Besides, the parasitic P-well/N-well diode in the SCR can provide the NS-mode ESD current path. Thus, SCR is the most promising ESD protection device in ESD protection design with low-capacitance consideration. The ESD protection scheme presented in this paper has been practically applied to an IC product with 2.5-Gb/s high-speed front-end interface.  相似文献   

8.
MOS-triggered silicon-controlled rectifier (SCR) devices have been reported to achieve efficient on-chip electrostatic discharge (ESD) protection in deep-submicrometer CMOS technology. The channel length of the embedded MOS transistor in the MOS-triggered SCR device dominates the trigger mechanism and current distribution to govern the trigger voltage, holding voltage, on resistance, second breakdown current, and ESD robustness of the MOS-triggered SCR device. The embedded MOS transistor in the MOS-triggered SCR device should be optimized to achieve the most efficient ESD protection in advanced CMOS technology. In addition, the layout style of the embedded MOS transistor can be adjusted to improve the MOS-triggered SCR device for ESD protection.  相似文献   

9.
基于传统双向可控硅(DDSCR)提出了两种静电放电(ESD)保护器件,可应对正、负ESD应力从而在2个方向上对电路进行保护。传统的DDSCR通过N-well与P-well之间的雪崩击穿来触发,而提出的新器件则通过嵌入的NMOS/PMOS来改变触发机制、降低触发电压。两种改进结构均在0.18μmRFCMOS下进行流片,并使用传输线脉冲测试系统进行测试。实验数据表明,这两种新器件具有低触发电压、低漏电流(~nA),抗ESD能力均超过人体模型2kV,同时具有较高的维持电压(均超过3.3V),可保证其可靠地用于1.8V、3.3V I/O端口而避免出现闩锁问题。  相似文献   

10.
在基于0.13μm CMOS工艺制程下,为研究片上集成电路ESD保护,对新式直通型MOS触发SCR器件和传统非直通型MOS触发SCR进行了流片验证,并对该结构各类特性进行了具体研究分析。实验采用TLP(传输线脉冲)对两类器件进行测试验证,发现新式直通型MOS触发SCR结构要比传统非直通型MOS触发SCR具有更低的触发电压、更小的导通电阻、更好的开启效率以及更高的失效电流。  相似文献   

11.
A new electrostatic discharge (ESD) protection design, by using the substrate-triggered stacked-nMOS device, is proposed to protect the mixed-voltage I/O circuits of CMOS ICs. The substrate-triggered technique is applied to lower the trigger voltage of the stacked-nMOS device to ensure effective ESD protection for the mixed-voltage I/O circuits. The proposed ESD protection circuit with the substrate-triggered technique is fully compatible to general CMOS process without causing the gate-oxide reliability problem. Without using the thick gate oxide, the new proposed design has been fabricated and verified for 2.5/3.3-V tolerant mixed-voltage I/O circuit in a 0.25-/spl mu/m salicided CMOS process. The experimental results have confirmed that the human-body-model ESD level of the mixed-voltage I/O buffers can be successfully improved from the original 3.4 to 5.6 kV by using this new proposed ESD protection circuit.  相似文献   

12.
A new CMOS on-chip electrostatic discharge (ESD) protection circuit which consists of dual parasitic SCR structures is proposed and investigated. Experimental results show that with a small layout area of 8800 μ2, the protection circuit can successfully perform negative and positive ESD protection with failure thresholds greater than ±1 and ±10 kV in machine-mode (MM) and human-body-mode (HBM) testing, respectively. The low ESD trigger voltages in both SCRs can be readily achieved through proper circuit design and without involving device or junction breakdown. The input capacitance of the proposed protection circuit is very low and no diffusion resistor between I/O pad and internal circuits is required, so it is suitable for high-speed applications. Moreover, this ESD protection circuit is fully process compatible with CMOS technologies  相似文献   

13.
A substrate-triggered technique is proposed to improve electrostatic discharge (ESD) protection efficiency of ESD protection circuits without extra salicide blocking and ESD-implantation process modifications in a salicided shallow-trench-isolation CMOS process. By using the layout technique, the whole ESD protection circuit can be merged into a compact device structure to enhance the substrate-triggered efficiency. This substrate-triggered design can increase ESD robustness and reduce the trigger voltage of the ESD protection device. This substrate-triggered ESD protection circuit with a field oxide device of channel width of 150 /spl mu/m can sustain a human-body-model ESD level of 3250 V without any extra process modification. Comparing to the traditional ESD protection design of gate-grounded nMOS (ggnMOS) with silicide-blocking process modification in a 0.25-/spl mu/m salicided CMOS process, the proposed substrate-triggered design without extra process modification can improve ESD robustness per unit silicon area from the original 1.2 V//spl mu/m/sup 2/ of ggnMOS to 1.73 V//spl mu/m/sup 2/.  相似文献   

14.
To provide area-efficient output ESD protection for the scaled-down CMOS VLSI, a new output ESD protection is proposed. In the new output ESD protection circuit, there are two novel devices, the PTLSCR (PMOS-trigger lateral SCR) and the NTLSCR (NMOS-trigger lateral SCR). The PTLSCR is in parallel and merged with the output PMOS, and the NTLSCR is in parallel and merged with the output NMOS, to provide area-efficient ESD protection for CMOS output buffers. The trigger voltages of PTLSCR and NTLSCR are lowered below the breakdown voltages of the output PMOS and NMOS in the CMOS output buffer. The PTLSCR and NTLSCR are guaranteed to be turned on first before the output PMOS or NMOS are broken down by the ESD voltage. Experimental results have shown that the PTLSCR and NTLSCR can sustain over 4000 V (700 V) of the human-body-model (machine-model) ESD stresses within a very small layout area in a 0.6 μm CMOS technology with LDD and polycide processes. The noise margin of the proposed output ESD protection design is greater than 8 V (lower than −3.3 V) to avoid the undesired triggering on the NTLSCR (PTLSCR) due to the overshooting (undershooting) voltage pulse on the output pad when the IC is under normal operating conditions with 5 V VDD and 0 V VSS power supplies.  相似文献   

15.
设计并流片验证了一种0.18μmRFCMOS工艺的2.4GHz低噪声放大器的全芯片静电放电(ESD)保护方案。对于射频(RF)I/O口的ESD防护,主要对比了二极管、可控硅(SCR)以及不同版图的互补型SCR,经流片与测试,发现岛屿状互补型SCR对I/O端口具有很好的ESD防护综合性能。对于电源口的ESD防护,主要研究了不同触发方式的ESD保护结构,结果表明,RCMOS触发SCR结构(RCMOS-SCR)具有良好的ESD鲁棒性和开启速度。基于上述结构的全芯片ESD保护设计,RF I/O口采用岛屿状布局的互补SCR结构的ESD防护设计,该ESD防护电路引入0.16dB的噪声系数和176fF的寄生电容,在人体模型(HBM)下防护能力可达6kV;电源口采用了RCMOS-SCR,实现了5kV HBM的ESD保护能力,该设计方案已经在有关企业得到应用。  相似文献   

16.
A novel SCR structure for on-chip ESD protection implemented with a deep submicron triple well CMOS technology is presented. The triple well technology offers the possibility of biasing the p-well, on which the structure is built, under transient ESD stress conditions and independently from the substrate. This greatly affects the turn on mechanism of the structure. Unlike conventional SCR devices, the proposed p-well coupled SCR offers a reduced triggering voltage level as well as the enhanced ESD performance of the SCR devices. The turn on of this structure is realized with a common RC trigger network. The concept is supported by device simulation results  相似文献   

17.
可控硅(SCR)作为静电放电(ESD)保护器件,因具有高的鲁棒性而被广泛应用,但其维持电压很低,容易导致闩锁问题。针对高压集成电路的ESD保护,提出了一种新颖的具有高维持电压的SCR结构(HHVSCR)。通过添加一个重掺杂的N型掺杂层(NIL),减小了SCR器件自身固有的正反馈效应,从而提高了SCR的维持电压。Sentaurus TCAD仿真结果表明,与传统的SCR相比,改进的HHVSCR无需增加额外的面积就可将维持电压从1.88 V提高到11.9 V,可应用于高压集成电路的ESD防护。  相似文献   

18.
SCR器件在CMOS静电保护电路中的应用   总被引:1,自引:0,他引:1  
静电放电(ESD)对CMOS电路的可靠性构成了很大威胁。随着CMOS电路集成度的不断提高,其对ESD保护的要求也更加严格。针对近年来SCR器件更加广泛地被采用到CMOS静电保护电路中的情况,文章总结了SCR保护电路发展过程中各种电路的工作机理。旨在为集成电路设计人员提供ESD保护方面的设计思路以及努力方向。  相似文献   

19.
The diode-triggered silicon-controlled rectifier (DTSCR) is widely used for electrostatic discharge (ESD) protection in advanced CMOS process owing to its advantages, such as design simplification, adjustable trigger/holding voltage, low parasitic capacitance. However, the multiple-triggering effect in the typical DTSCR device may cause undesirable larger overall trigger voltage, which results in a reduced ESD safe margin. In previous research, the major cause is attributed to the higher current level required in the intrinsic SCR. The related discussions indicate that it seems to result from the current division rule between the intrinsic and parasitic SCR formed in the triggering process. In this letter, inserting a large space into the trigger diodes is proposed to get a deeper insight into this issue. The triggering current is observed to be regularly reduced along with the increased space, which confirms that the current division is determined by the parasitic resistance distributed between the intrinsic and parasitic SCR paths. The theoretical analysis is well confirmed by device simulation and transmission line pulse (TLP) test results. The reduced overall trigger voltage is achieved in the modified DTSCR structures due to the comprehensive result of the parasitic resistance vs triggering current, which indicates a minimized multiple-triggering effect.  相似文献   

20.
A new electrostatic discharge (ESD) protection circuit, using the stacked-nMOS triggered silicon controlled rectifier (SNTSCR) as the ESD clamp device, is designed to protect the mixed-voltage I/O buffers of CMOS ICs. The new proposed ESD protection circuit, which combines the stacked-nMOS structure with the gate-coupling circuit technique into the SCR device, is fully compatible to general CMOS processes without causing the gate-oxide reliability problem. Without using the thick gate oxide, the experimental results in a 0.35 /spl mu/m CMOS process have proven that the human-body-model ESD level of the mixed-voltage I/O buffer can be successfully increased from the original /spl sim/2 kV to >8 kV by using this proposed ESD protection circuit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号