首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Near field measurement techniques in conjunction with near-field to far-field transformation algorithms are widely used today. Two of the most important concerns are, firstly, the degree of accuracy achieved, and secondly, the measurement duration. Although high degrees of accuracy can be obtained, the time required to scan completely the near field of an antenna using the classical near-field measurement techniques is rather long. The modulated scattering technique would offer a means to reduce this time by a factor of 10 to 100 while maintaining a reasonable degree of accuracy. Using this technique, however, one introduces further sources of inaccuracy such as the mutual coupling between the elements of the array used to probe the test antenna, and the further limitation of the available measurement dynamic range. In this paper, these two sources of inaccuracy inherent in this technique or other techniques which use a similar set-up, are explored. Multiple reflections between the test antenna and the probe array are ignored. A parabolic reflector is chosen as the test antenna, and an array of dipoles is chosen as the probe antenna in the numerical simulation.  相似文献   

2.
Microwave diagnosis of antennas is considered as a viable tool for the determination of reflector surface distortions and location of defective radiating elements of array antennas. A hybrid technique based on the combination of the spherical near-field measurements and holographic metrology reconstruction is presented. The measured spherical near-field data are first used to construct the far-field amplitude and phase patterns of the antenna on specified regularized u-v coordinates. These data are then utilized in the surface profile reconstruction of the holographic technique using a fast-Fourier-transform (FFT)/iterative approach. Results of an experiment using a 156-cm reflector antenna measured at 11.3 GHz are presented for both the original antenna and the antenna with four attached bumps. Several contour and gray-scaled plots are presented for the reconstructed surface profiles of the measured antennas. The recovery effectiveness of the attached bumps has been demonstrated. The hybrid procedure presented is used to assess the achieved accuracy of the holographic reconstruction technique because of its ability to determine very accurate far-field amplitude and phase data from the spherical near-field measurements  相似文献   

3.
An analytical technique for predicting accurately the near (electric and magnetic) fields as well as the far fields of a reflector antenna with a pencil beam is presented. The technique proposed involves the near-field geometrical theory of diffraction (GTD) analysis of reflector antennas developed earlier and spherical vector mode functions. The proposed technique does not place any restriction on the range of polar angles or radial distances of the observation point. It is demonstrated that the technique proposed can predict the fields radiated by the reflector with greater accuracy by comparing the calculated results with the available measured results. A few important applications of the analysis proposed are also highlighted.  相似文献   

4.
介绍用于天线平面近场测量的一种近远场变换新算法。该法利用被测天线的平面波谱和口径场幅相分布之间的关系,以及天线口面的约束条件,用G-P迭代算法从平面波谱的置信谱域部分恢复出置信谱域外的平面波谱。这种方法减小了较小截断角下有限扫描面对测量精度的影响,并提高了天线近场测量的效率。  相似文献   

5.
The four-point bivariate Lagrange interpolation algorithm was applied to near-field antenna data measured in a plane-polar facility. The results were sufficiently accurate to permit the use of the FFT (fast Fourier transform) algorithm to calculate the far-field patterns of the antenna. Good agreement was obtained between the far-field patterns as calculated by the Jacobi-Bessel and the FFT algorithms. The significant advantage in using the FFT is in the calculation of the principal plane cuts, which may be made very quickly. Also, the application of the FFT algorithm directly to the near-field data was used to perform surface holographic diagnosis of a reflector antenna. The effects due to the focusing of the emergent beam from the reflector, as well as the effects of the information in the wide-angle regions, are shown. The use of the plane-polar near-field antenna test range has therefore been expanded to include these useful FFT applications  相似文献   

6.
天线的远场对于研究天线辐射特性具有重大意义,近场测量技术因其能够避免直接测量远场而得到广泛应用,该技术采用近远场变换获得远场,然而,检验该远场的准确性也是很重要的.为了解决此类问题,文中以球面近场测量为例,提供了一种解决方案.该方案主要探讨了球面波模式展开理论,该理论是实现球面近远场变换算法的关键,其将待测天线在空间建立的场展开成球面波函数之和,天线的加权系数既包含了远场信息也包含了近场信息.因此,不仅能够利用近场测量信息获得远场辐射特性,同样能够利用远场辐射特性反推得到近场处电场,这样就能检验由近远场变换算法得到的远场是否准确.文中首先推算得到了近远场变换公式,随后进一步推算得到远近场变换的公式,最后将本文算法计算结果与FEKO测量结果进行比较,二者吻合良好,从而证实了本文两种算法的有效性.  相似文献   

7.
张士选  郑会利 《电波科学学报》1998,13(2):201-203,208
文章讨论了极平面近场测量确定天线远区辐射场的基本公式,采用Jacobi-Bessels级数展开方法求解电磁流模系数。通过对1.2m反射面天线极平面近场扫描的实测结果与远场测量结果的比较,证明了该方法的有效性。  相似文献   

8.
A measurement technique is described in which frequency scaled models of struts are placed in the near-field region of an offset reflector. In this compact range environment the excitation of the strut model is by plane waves, as would be encountered in the axisymmetrical reflector situation. Far-field radiation patterns are recorded, with and without the strut model in place, and, because of the low sidelobe levels associated with offset reflector antenna systems, it is possible to isolate the far-field response of the strut model. This technique is particularly useful for determining the real effects of structures that are difficult to analyze mathematically, such as latticed struts or metallic geodetic radomes.  相似文献   

9.
Preliminary design of large reflectors with flat facets   总被引:4,自引:0,他引:4  
A concept for approximating curved antenna surfaces using flat facets is discussed. A preliminary design technique for determining the size of the reflector surface facets necessary to meet antenna surface accuracy requirements is presented. A proposed large microwave radiometer satellite (MRS) is selected as an application, and the far-field electromagnetic response of a faceted reflector surface is compared with that from a spherical reflector surface.  相似文献   

10.
11.
Subreflectarrays for Reflector Surface Distortion Compensation   总被引:1,自引:0,他引:1  
With the increasing interest in the applications of large deployable reflector antennas operating at high frequencies, the requirement on the reflector surface accuracy becomes more demanding. Thermal effects inevitably cause certain reflector surface distortions, thus degrading the overall antenna performance. This paper introduces a novel reflector surface distortion compensation technique using a subreflectarray and presents detailed discussions. A microstrip reflectarray is used as a subreflector, illuminated by a primary feed. By properly adjusting the additional phase shift provided by the subreflectarray, the aperture phase errors caused by the main reflector surface distortions are compensated, resulting in a considerably improved antenna performance. As an example, a distorted 20-m offset parabolic reflector antenna operating at X-band is successfully compensated by a subreflectarray, and the simulation results are compared with those obtained by array feed and shaped subreflector compensation techniques. The microstrip subreflectarray is low-profile, lightweight, and cost-effective. Only one primary feed is required, and a reconfigurable design can be achieved if electronically reconfigurable reflectarray elements are adopted.   相似文献   

12.
There are several types of CATRs (compact antenna test ranges) used in antenna-pattern measurements. An offset reflector is generally used to generate the quiet zone of a CATR. Serrated edges, rolled edges, or R-cards are generally chosen along the reflector's edge to reduce the edge-diffraction field inside the quiet zone of the CATR. In order to reduce stray signals from the environment, a high-quality RF anechoic chamber is required for a CATR. In this paper, a new type of CATR, without either a reflector edge treatment or an RF anechoic chamber, is developed. A commercially available DBS (direct-broadcast satellite) reflector antenna, without edge treatment, is used as the reflector antenna of the CATR to generate the quiet zone of the antenna test range. In order to improve the quiet zone's performance, the fields due to feed spillover, edge diffractions, and other stray signals are gated out by the ITDAMS (impulse time-domain antenna measurement system). The RF interference in the environment can also be reduced by time synchronization and pulse integration of the impulse time-domain antenna measurement system. In order to verify the capabilities of the proposed CATR, three kinds of antennas (a low-directivity horn antenna, a high-directivity 60 cm direct-broadcast satellite reflector antenna, and a 25 cm Ka-band Cassegrain LMDS - local microwave distribution system - antenna) were measured by the proposed CATR. The antenna-pattern results agreed quite well with those of a near-field range and a far-field range.  相似文献   

13.
Trueba  G. Junkin  G. 《Electronics letters》1995,31(14):1116-1117
The authors demonstrate mathematically that the direction of an antenna beam (antenna pointing) can be determined by the centre-of-gravity of its beam intensity. The technique is validated using measurements on a 1.118 m 94 GHz Cassegrain reflector and is seen as pivotal in the future application of the phase retrieval technique for near-field/far-field prediction  相似文献   

14.
以某雷达双曲率反射面天线为对象,介绍了大型曲面天线常用的精度测量方法,这些方法存在测量点拟合和设计坐标系与测试坐标系的转换关系等难点,数据处理关系复杂,利用统一基准、编程、数据转换等方法求出测量点对应的设计坐标值,通过与测试值比较得出工作面的均方根误差值,实现面精度测量和计算,解决了数据处理难点问题.  相似文献   

15.
Recent investigations have demonstrated that uniform sampling techniques can be effectively applied for construction of far-field patterns of antennas. There are, however, many circumstances for which it may not be practical to directly utilize uniform sampling techniques. A two-dimensional sampling technique which can employ irregularly (nonuniformly) spaced samples (amplitude and phase) in order to generate the complete far-field patterns is presented. The technique implements a matrix inversion algorithm which depends only on the nonuniform sampled data point locations and with no dependence on the actual field values at these points. A powerful simulation algorithm is presented to allow a real-life simulation of many reflector/feed configurations and to determine the usefulness of the nonuniform sampling technique for the co-polar and cross-polar patterns. Additionally, an overlapped window concept and a generalized error simulation model are discussed to identify the stability of the technique for recovering the field data among the nonuniform sampled data. Numerical results are tailored for the pattern reconstruction of a 20-m offset reflector antenna operating atL-band. This reflector is planned to be used in a proposed measurement concept of large antennas aboard the space shuttle, whereby it would be almost impractical to accurately control the movement of the shuttle with respect to the radio frequency (RF) source in prescribed directions in order to generate uniform (u, v) sampled points. Also, application of the nonuniform sampling technique to patterns obtained using near-field measured data is demonstrated. Finally, results of an actual far-field measurement are presented for the construction of patterns of a reflector antenna from a set of nonuniformly distributed measured amplitude and phase data.  相似文献   

16.
Antenna near-field measurements typically require very accurate measurement of the near-field phase. There are applications where an accurate phase measurement may not be practically achievable. Phaseless measurements are beginning to emerge as an alternative microwave antenna measurements technique when phase cannot be directly measured. There are many important aspects for successful implementation of a phaseless measurement algorithm. This paper presents appropriate phaseless measurement requirements and a phase retrieval algorithm tailored for the bi-polar planar near-field antenna measurement technique. Two amplitude measurements and a squared amplitude optimal sampling interpolation method are integrated with an iterative Fourier procedure to first retrieve the phase information and then construct both the far-field pattern and diagnostic characteristics of the antenna under test. In order to critically examine the methodologies developed in this paper, phaseless measurement results for two different array antennas are presented and compared to results obtained when the near-field amplitude and phase are directly measured  相似文献   

17.
The problems involved in the direct far-field measurements of large antennas have led to the development of the near-field measurement technique. According to this method, the far-field pattern of the antenna is calculated from the near-field measurements close to the antenna. The only inconvenience in this technique is the slow rate of measurements. This slowness is due to the mechanical displacement of the measuring probe or the test antenna. The modulated scattering technique is a method to reduce the measurement time while preserving acceptable levels of accuracy. This article is mainly concerned with estimating the possible measurement rates in typical configurations.  相似文献   

18.
Compact range measurements with a serrated edge and a blended, rolled edge reflector are compared. This is done by using simulated antenna pattern and backscattered field measurements. The measurement errors caused by stray signals emanating from the edge termination of reflector are discussed. It has been found that different stray signal sources impact on the measurement accuracy from different aspect angles. In addition, the measurement accuracy achievable with different reflector systems is dependent on the characteristics of the antenna or scatterer under test. From these findings, one will be better able to understand how well these two types of reflectors will perform in terms of accurately providing the proposed measurements. Consequently, one will be able to choose the best reflector design for his/her application  相似文献   

19.
In this paper two methods for calculating the received electromagnetic field by a single-parabolic reflector antenna in the shadow region behind a finite-width screen are proposed and analysed. The first one is referred to as the far-field approach and treats the obstacle and reflector antenna diffraction separately. The antenna simply is replaced by a point source having the receiving properties of the reflector antenna considered. The second method is called the near-field approach and considers the combined effect of obstacle and antenna diffraction. It is shown that considerable differences between the results of both methods may exist, even for an obstacle-antenna separation large compared to the Rayleigh distance of the antenna, and both for a CW and broadband analysis of the communications channel. It is concluded that the near-field method gives the best results and can be applied to many practical problems such as interference reduction and searching the optimal position of VSATs in urban environments.  相似文献   

20.
The received field as focused by the parabolic main reflector of a Cassegrainian antenna at the surface of an arbitrary profile subreflector is calculated by a spherical wave expansion. This facilitates the application of the field correlation principle and leads to an expression for aperture efficiency taking into account diffraction effects. A comparison is made with numerical results previously published or obtained by other methods. The potential advantage of the technique is the speed of computation and the capability for synthesis as well as analysis of reflector shapes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号