首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Myosin II is important for normal cytokinesis and cell wall maintenance in yeast cells. Myosin II-deficient (myo1) strains of the budding yeast Saccharomyces cerevisiae are hypersensitive to nikkomycin Z (NZ), a competitive inhibitor of chitin synthase III (Chs3p), a phenotype that is consistent with compromised cell wall integrity in this mutant. To explain this observation, we hypothesized that the absence of myosin type II will alter the normal levels of proteins that regulate cell wall integrity and that this deficiency can be overcome by the overexpression of their corresponding genes. We further hypothesized that such genes would restore normal (wild-type) NZ resistance. A haploid myo1 strain was transformed with a yeast pRS316-GAL1-cDNA expression library and the cells were positively selected with an inhibitory dose of NZ. We found that high expression of the ubiquitin-conjugating protein cDNA, UBC4, restores NZ resistance to myo1 cells. Downregulation of the cell wall stress pathway and changes in cell wall properties in these cells suggested that changes in cell wall architecture were induced by overexpression of UBC4. UBC4-dependent resistance to NZ in myo1 cells was not prevented by the proteasome inhibitor clasto-lactacystin-beta-lactone and required the expression of the vacuolar protein sorting gene VPS4, suggesting that rescue of cell wall integrity involves sorting of ubiquitinated proteins to the PVC/LE-vacuole pathway. These results point to Ubc4p as an important enzyme in the process of cell wall remodelling in myo1 cells.  相似文献   

2.
3.
Proline protects yeast cells from damage caused by various stresses. A yeast Saccharomyces cerevisiae mutant with high levels of intracellular proline grown in a minimal medium accumulated proline in its vacuole, but when grown in a nutrient medium, accumulated proline mainly in the cytosol. To understand the role of the proline pool in the vacuole, we examined the stress-protective effect of proline in proline-accumulating yeast cells deficient in vacuolar functions. The disruption of PEP3 encoding a vacuolar membrane protein required for vacuolar biogenesis caused hypersensitivity to heat shock and ethanol stresses, probably due to disappearance of normal vacuoles. The vph1-disrupted cells lacking vacuolar-ATPase activity showed resistance to heat shock without any change in proline localization, but showed severe growth defects in an ethanol-containing medium. These results indicate that vacuolar functions are involved in the stress-protective effect of proline in S. cerevisiae. Also, it appears that excess proline is transported to the vacuole in an ATP-independent manner.  相似文献   

4.
Using a screening procedure for obtaining yeast strains with enhanced ability to secrete heterologous protein, we have isolated a mutant with alteration of the cell wall structure. This mutant displayed strong decrease in cell wall mannoprotein content, which was not accompanied by decreased glycosylation of secreted proteins. The mutation defines a gene, designated SSU21(identical to previously characterized MCD4), which encodes a novel vacuolar protein. SSU21 is probably connected to the cell integrity protein kinase C-mediated pathway, since ssu21 and pkc1Delta double mutant is synthetic lethal. To our knowledge, this is the first example of a yeast vacuolar protein whose alteration results in a cell wall defect.  相似文献   

5.
Mating in yeast is initiated by binding of pheromone to G-protein-coupled receptors expressed in haploid cells. We analysed the role of KlSte2p and KlSte3p receptors in the Kluyveromyces lactis mating pathway. By sequence analysis, KlSte2p and KlSte3p are the homologues of the Saccharomyces cerevisiae alpha-pheromone and a-pheromone receptors, respectively. However, by expression experiments, we determined that KlSTE2 gene is expressed in the cells typified as MATalpha and therefore is the receptor for the K. lactis a-pheromone and KlSTE3 gene is expressed in the MATa cells and binds the alpha-pheromone. The KlSTE2 gene is silent in MATa cells, while it is highly expressed in MATalpha cells, and conversely the KlSTE3 gene is expressed in MATa cells and repressed in MATalpha cells. Disruption mutants of both genes were found to be sterile, and this defect is reversed by plasmidic copies of each gene. The cytoplasmic C-terminus of KlSte3p interacts strongly with the KlGpa1p (Galpha) subunit, which is involved in the transduction of the pheromone stimulus to induce mating. Remarkably, this same domain does not interact with a constitutive active allele of the Galpha subunit, indicating that the C-terminus is able to discriminate between the active (GTP-bound) and inactive (GDP-bound) forms of the Galpha subunit.  相似文献   

6.
The functional expression of the mouse Kir2.1 potassium channel in yeast cells lacking transport systems for potassium and sodium efflux (ena1-4delta nha1delta) resulted in increased cell sensitivity to high external concentrations of potassium. The phenotype depended on the level of Kir2.1 expression and on the external pH. The activity of Kir2.1p in the yeast cells was almost negligible at pH 3.0 and the highest at pH 7.0. Kir2.1p was permeable for both potassium and rubidium cations, but neither sodium nor lithium were transported via the channel. Measurements of the cation contents in cells confirmed the higher concentration of potassium in cells with Kir2.1p. Specific inhibition of the mKir2.1 channel activity by Ba2+ cations was observed. The use of a mutant strain lacking both potassium efflux and uptake transporters (ena1-4delta nha1delta trk1delta trk2delta) enabled the monitoring of channel activity on two levels--the provision of the necessary amount of intracellular K+ in media with low potassium concentrations, and simultaneously, the channel's contribution to cell potassium sensitivity in the presence of high external K+. This combination of mutations proved to be a new, sensitive and practical tool for characterizing the properties of heterologously expressed transporters mediating both the efflux and influx of alkali-metal-cations.  相似文献   

7.
A cDNA library was prepared from Histoplasma capsulatum strain G‐217B yeast cells and an apparently full‐length cDNA for a subunit of the citric acid cycle enzyme NAD(+)‐isocitrate dehydrogenase was identified by sequence analysis. Its predicted amino acid sequence is more similar to the IDH1 regulatory subunit of S. cerevisiae NAD(+)‐isocitrate dehydrogenase than to the IDH2 catalytic subunit. After expression in S. cerevisiae from an S. cerevisiae promoter, it was shown to functionally complement an S. cerevisiae idh1 mutant, but not an idh2 mutant, for growth on acetate as a carbon source and for production of NAD(+)‐isocitrate dehydrogenase enzyme activity. These results confirm that the H. capsulatum cDNA encodes a homologue of subunit I of the S. cerevisiae mitochondrial isocitrate dehydrogenase isozyme that functions in the citric acid cycle. The HcIDH1 cDNA sequence is available in GenBank with Accession No. AF009036. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

8.
Two alpha-glucosidase (maltase) genes, designated GLUCPI and GLUCPII, have been cloned from an industrial strain of baker's yeast (Saccharomyces cerevisiae) by complementation of a maltase-negative mutant strain. The different genes were identified according to their alternatively expressed isoenzymes PI and PII in transformants after isoelectric focusing and activity staining in separated cell lysates. The gene encoding alpha-glucosidase PI (GLUCPI), which was not present in laboratory strains of S. carlsbergensis with a defined MAL1, 2, 3, 4 or 6 locus, was sequenced and compared with the recently published MAL6S gene. This comparison revealed single amino acid deviations at three positions in the predicted polypeptide sequence. In addition, the divergent promoter region of GLUCPI differed from MAL6S by a triple repeated 147-bp DNA segment. Maltose induction and glucose repression of alpha-glucosidase PI were not affected by the deletion of the repeated DNA segment. However, the absolute expression of alpha-glucosidase PI increased two- to four-fold. In addition, a two-fold increase in the maltase synthesis occurred when the cloned positive regulator gene MAL2-8ep was on the same plasmid. Furthermore, stability of the alpha-glucosidase in cultures in the stationary growth phase was greatly enhanced using a host strain lacking the proteinases A and B and the carboxypeptidases Y and S. Promoter trimming, MAL2-8cp stimulation and the use of a host strain deficient in four vacuolar proteinases resulted in alpha-glucosidase PI expression of about 13% of the soluble protein.  相似文献   

9.
10.
The Saccharomyces cerevisiae haploid cell response to pheromone involves two seven-transmembrane-domain pheromone receptors that couple to a heterotrimeric G protein. The G50V mutation in the G protein alpha subunit (G(alpha)), Gpa1p, is analogous to the p21(ras) transforming mutation Gly-->Val 12, and has been extensively examined for the phenotypes it produces in yeast cells. Here we have characterized the Gpa1(G50V) mutant protein in vitro by examining GTPgammaS binding, GDP exchange, GTP occupancy and guanosine triphosphatase (GTPase) activity. Compared to wild-type (WT) Gpa1p, Gpa1(G50V)p was found to have a moderately reduced GTPase activity and increased GTP occupancy, while GTPgammaS binding and GDP exchange were not significantly altered. The yeast regulator of G protein Signalling (RGS) protein, Sst2p, was also expressed and purified, and found to have a significantly reduced ability to stimulate the initial rate of GTP hydrolysis of Gpa1(G50V)p compared to its effect on WT Gpa1p. Probing conformational transitions by a protease sensitivity assay suggested that Gpa1(G50V)p did not bind the transition state mimetic GDP/AlF(4)(-) as efficiently as the WT Gpa1p. These biochemical results can explain many of the known gpa1(G50V) yeast cell phenotypes.  相似文献   

11.
The conditional vacuolar segregation mutant vac2-1 [Shaw and Wickner (1991) EMBO J. 10, 1741–1748] shifted to non-permissive temperature (37°C), forms large-budded cells without a vacuole in the bud, and daughter cells without an apparent vacuole. Some cells still contain normal segregation structures. Structural and biochemical quantification of the segregation defect showed that (i) about 10% of the full-grown buds did not contain a vacuole, (ii) about 15% of the small cells washed out of a population growing in an elutriation chamber at 37°C, did not contain a visible vacuole, and (iii) 15% of the cells per generation lost carboxypeptidase Y activity after proteinase A depletion. Thus, 10–15% of the daughter cells did not inherit vacuolar structures or vacuolar proteolytic activity from the mother cell. To investigate the fate of vacuole-less daughters, these cells were isolated by optical trapping. The isolated cells formed colonies on agar plates that consisted of cells with normal vacuoles, both at 23 and 37°C. Thus, the vacuole-less cells that failed to inherit proteolytic activities from the mother cell apparently give rise to progeny containing structurally normal vacuoles. Time-lapse experiments showed that vacuole-less daughter cells formed vacuolar vesicles that fused into a new vacuole within 30 min. Although new buds only emerged after a vacuole had formed in the mother cell, the temporary lack of a vacuole had little effect on growth rate. The results suggest that an alternative pathway for vacuole formation exists, and that yeast cells may require a vacuole of some minimal size to initiate a new round of budding. © 1997 by John Wiley & Sons, Ltd.  相似文献   

12.
Biogenesis of an active ribosome complement and a dynamic cell surface complement are two major determinants of cellular growth. In yeast, the 60S ribosomal subunit protein RpL10p/Grc5p functions during successive stages in ribosome biogenesis, specifically rRNA processing, nucle(ol)ar preribosomal subunit assembly, nucleo-cytoplasmic transport and cytoplasmic maturation of ribosomes. Here, we report that a two-hybrid screen identified yeast genes SED1, ACS2 and PLB3 as encoding proteins physically interacting with both ribosomal RpL10p/Grc5p and its human homologue hRpL10p/QMp. SED1 encodes a differentially expressed cell wall protein which is proposed to be first transiently secreted to the plasma membrane as a GPI (glycosylated derivative of phosphoinositol)-anchored form and to be then transferred to the glucan layer of the cell wall. Ectopic expression of SED1 rescues both the aberrant growth phenotype and the translation defect of grc5-1(ts) temperature-sensitive cells. Furthermore, we report that Sed1p associates with translating ribosomes suggesting a novel, cytoplasmic role for Sed1p. ACS2 encodes one of the two yeast acetyl-CoA synthases and represents a key enzyme in one of several metabolic routes to produce acetyl-CoA, which in turn is indispensable for lipid biosynthesis. PLB3 encodes a phospholipase, which is active in the breakdown of membrane lipids. Our results support the view that Grc5p/RpL10p links ribosome function to membrane turnover and cell surface biogenesis.  相似文献   

13.
Tolerance mechanism of the ethanol-tolerant mutant of sake yeast   总被引:2,自引:0,他引:2  
Several ethanol-tolerant mutants have been bred from industrial sake yeasts, but the mechanism of ethanol tolerance in these mutants has not been elucidated. After the determination of the entire genome sequence of Saccharomyces cerevisiae, various methods to monitor the whole-gene expression of the yeast have been developed. In this study, we used a commercially available nylon membrane on which virtually every gene of S. cerevisiae was spotted to compare expression profiles between the ethanol-tolerant mutant and its parent sake yeast to investigate the mechanism of ethanol tolerance in this mutant. As a result, we found that several genes were highly expressed only in the ethanol-tolerant mutant but not in the parent strain. These genes were known to be induced in cells that were exposed to various stresses, such as ethanol, heat, and high osmolarity, or at the stationary-phase but not at the log-phase. In the ethanol-tolerant mutant, the expression level of these stress-responsive genes was further increased after exposure to ethanol. We also found that substances such as catalase, glycerol and trehalose that may have protective roles under stressful conditions were accumulated in high amounts in the ethanol-tolerant mutant. The ethanol-tolerant mutant also exhibited resistance to other stresses including heat, high osmolarity and oxidative stress in addition to ethanol tolerance. These results indicate that the mutant exhibits multiple stress tolerance because of elevated expression of stress-responsive genes, resulting in accumulation of stress protective substances.  相似文献   

14.
To understand endocytic trafficking in Schizosaccharomyces pombe, we constructed an end4 disruption mutant. The end4+ gene encodes a protein homologous to Sla2p/End4p, which is essential for the assembly and function of the cytoskeleton and endocytosis in Saccharomyces cerevisiae. We characterized the fission yeast mutant end4 Delta as well as ypt7 Delta, which is deficient in vacuolar fusion and, hence, endocytosis. The delivery of FM4-64 to the vacuolar membrane, accumulation of Lucifer yellow CH and internalization of plasma membrane protein Map3-GFP were inhibited in the end4 mutant. Deletion of end4 resulted in pleiotropic phenotypes consistent with F-actin depolarization, including high temperature sensitivity, abnormal morphology and mating defects. Extensive missorting of carboxypeptidase Y was detected in the ypt7 mutant; however, little missorting was detected in the end4 mutant. These results indicate that End4p is essential for the internalization process and Ypt7p affects endocytosis at a post-internalization step after the intersection of the endocytic and the vacuolar protein-sorting pathways in fission yeast.  相似文献   

15.
16.
Exposure of food products to small-intestinal-like Caco-2 cells, combined with a gene expression based response analysis can be a valuable tool to classify potential bioactive effects of food homogenates. In order to study changes in gene expression upon food exposure, a robust set of stably expressed genes is required for normalization. Here we present a set of reference genes suitable for RT-qPCR that has been validated for exposure studies with the intestinal-like Caco-2 cell line. This study identified ribosomal phosphoprotein P0 (RPLP0) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) as best reference genes. The set can be extended with β-2-microglobulin (B2M), splicing factor 3A, subunit 1 (SF3A1), and mitochondrial ribosomal protein L19 (MRPL19). Food homogenates did provoke responses in the Caco-2 cells, as was demonstrated by changed expression of NAD(P)H Quinone dehydrogenase 1 (NQO1), Claudin 4 (CLDN4), Nitric Oxide Synthase 2 (NOS2), and ATP-binding cassette, subfamily B, member 1 (ABCB1) in the same experiment. Results indicate that: i) natural food homogenates can exert effects in Caco-2 cells, and ii) stability in expression of the reference genes is not due to a lack of response of the Caco-2 cells.  相似文献   

17.
为分析马乳酒样乳杆菌ZW3(Lactobacillus kefiranofaciens ZW3)的一株突变株2#胞外多糖(exopolysaccharide,EPS)产量下降的原因。对突变株2#进行基因组重测序后与野生菌ZW3全基因组比对,分析突变基因在代谢通路中EPS产量的相关性;利用实时荧光定量-聚合酶链式反应(quantitative real-time polymerase chain reaction,RT-qPCR)技术分析可能会与多糖产量相关的突变基因的相对表达量;构建含有表达量变化明显基因的重组质粒转至大肠杆菌并测定其酶活性,探究突变基因与产糖量的关系。结果经全基因组分析比对,野生菌株ZW3与突变株2#在CDS区和启动子区发生突变的基因共60?个,其中相关催化反应酶类基因有6 个,分别为:WANG_0173、WANG_0174、WANG_0175(3 个基因均为编码二羟丙酮激酶亚基部分)、WANG_0292(β-半乳糖苷酶小亚基)、WANG_0840(UDP-N-乙酰胞壁酸-L-丙氨酸/D-谷氨酸连接酶)、WANG_1108(丝氨酸/苏氨酸蛋白激酶),其中WANG_0292发生了同义突变。RT-qPCR分析突变基因相对表达量,发现突变株WANG_1108基因相对表达量下降明显,选取WANG_1108进一步阐明与多糖产量的关系;成功构建重组表达载体pET28a-ZW3/2#-1108、并转至表达菌株大肠杆菌BL21(DE3),诱导蛋白表达,经聚丙烯酰胺凝胶电泳酶活性测定结果显示,突变株中酶活性比野生菌降低了37%。由此推测基因WANG_1108的突变是影响突变株产糖量下降的原因之一。  相似文献   

18.
Transformation of the respiratory-defective mutant (E264/U2) of Saccharomyces cerevisiae with a yeast genomic library yielded two different plasmids capable of restoring the ability of the mutant to grow on non-fermentable substrates. One of the plasmids (pG52/T3) contained SDH1 coding for the flavoprotein subunit of mitochondrial succinate dehydrogenase. The absence of detectable succinate dehydrogenase activity in mitochondria of E264/U2 and the lack of complementation of the mutant by an sdh11null strain indicated a mutation in SDH1. The second plasmid (pG52/T8) had an insert with reading frame (YJL045w) of yeast chromosome X coding for a homologue of SDH1. Subclones containing the SDH1 homologue (SDH1b), restored respiration in E264/U2 indicating that the protein encoded by this gene is functional. The expression of the two genes was compared by assaying the β-galactosidase activities of yeast transformed with plasmids containing fusions of lacZ to the upstream regions of SDH1 and SDH1b. The 100–500 times lower activity measured in transformants harbouring the SDH1b-lacZ fusion indicates that the isoenzyme encoded by SDH1b is unlikely to play an important role in mitochondrial respiration. This is also supported by the absence of any obvious phenotype in cells with a disrupted copy of SDH1b. © 1998 John Wiley & Sons, Ltd.  相似文献   

19.
Vacuoles were isolated from Yarrowia lipolytica yeast cells taken at various growth phases under carbon or nitrogen limitation. Vacuoles from the cells at the logarithmic growth phase showed a high activity of vacuolar H+-ATPase (0·9–1·1 U/mg protein) and efficiently generated chemical proton gradient and membrane potential across the tonoplast. Ca2+- and citrate transport were found to be maximal at this growth phase. At growth retardation and then in the stationary phase all the parameters studied decreased irrespective of the method of growth limitation. The citrate-transporting activity of vacuoles completely disappeared at growth retardation, also irrespective of the limitation method and irrespective of whether yeast cells overproduced citrate in the culture medium. The citrate-transporting system of Y. lipolytica vacuolar membrane is concluded not to be involved in citrate efflux and this efflux is probably performed by the plasmalemma transport system.  相似文献   

20.
The exozymocin secreted by Kluyveromyces lactis causes sensitive yeast cells, including Saccharomyces cerevisiae, to arrest growth in the G(1) phase of the cell cycle. Despite its heterotrimeric (alpha beta gamma) structure, intracellular expression of its smallest subunit, the gamma-toxin, is alone responsible for the G(1) arrest. The alpha subunit, however, has a chitinase activity that is essential for holozymocin action from the cell exterior. Here we show that sensitive yeast cells can be rescued from zymocin treatment by exogenously applying crude chitin preparations, supporting the idea that chitin polymers can compete for binding to zymocin with chitin present on the surface of sensitive yeast cells. Consistent with this, holozymocin can be purified by way of affinity chromatography using an immobilized chitin matrix. PCR-mediated deletions of chitin synthesis (CHS) genes show that most, if not all, genetic scenarios that lead to complete loss (chs3 Delta), blocked export (chs7 Delta) or reduced activation (chs4 Delta), combined with mislocalization (chs4 Delta chs5 Delta; chs4 Delta chs6 Delta; chs4 Delta chs5 Delta chs6 Delta) of chitin synthase III activity (CSIII), render cells refractory to the inhibitory effects of exozymocin. In contrast, deletions in CHS1 and CHS2, which code for CSI and CSII, respectively, have no effect on zymocin sensitivity. Thus, CSIII-polymerized chitin, which amounts to almost 90% of the cell's chitin resources, appears to be the carbohydrate receptor required for the initial interaction of zymocin with sensitive cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号