首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pb0.6Sr0.4TiO3 (PST) ferroelectric thin films were prepared on two different substrates by sol–gel methods. Films derived on the LaNiO(LNO)/Pt/Ti/SiO2/Si substrates showed a strong (100) preferred orientation. The PST thin films grown on the LNO/Pt/Ti/SiO2/Si(100) substrate showed a non-uniform rounded grain size distribution and have a larger polarization and lower coercive field E c. The dependence of electrical properties derived on the Pt/Ti/SiO2/Si and LNO/Pt/Ti/SiO2/Si substrates has been studied, with a focus on the change of dielectric constant versus direct current (DC) bias field. The dielectric and ferroelectric properties of the Pb0.6Sr0.4TiO3 thin films deposition on two kinds of substrates were investigated as a function of temperature, frequency and DC bias field.  相似文献   

2.
An addition of just 0.4 wt% Li2O to (Ba0.6Sr0.4)TiO3 powder was able to reduce the sintering temperature to ≤900°C and produce ceramics with a relative density of 97%. Small amounts of two secondary phases were formed during this process: Li2TiO3 and Ba2TiO4. The addition of Li2O depresses the ferroelectric character of the (Ba0.6Sr0.4)TiO3 and, as a result, reduces the permittivity, improves the temperature coefficient of permittivity, and reduces the dielectric losses. The tunability shows no significant variation with Li2O concentration and remains between 16.5% and 13.5%. A low-temperature sintering mechanism was proposed. The mechanism involves the intermediate formation of BaCO3, its melting and the incorporation of Li+ into the BST. The sintering mechanism can be characterized as reactive liquid-phase sintering.  相似文献   

3.
The effects of liquid-phase sintering aids on the microstructures and PTCR characteristics of (Sr0.2Ba0.8)TiO3 materials have been studied. The grain size of sintered materials monotonically decreases with increasing content of Al2O3–SiO2–TiO2 (AST). The ultimate PTCR properties with ρhtrt as great as 105.61 are obtained for fine-grain (10-μm) samples, which contain 12.5 mol% AST and were sintered at 1350°C for 1.5 h. The quantity of liquid phase formed due to eutectic reaction between AST and (Sr,Ba)TiO3 is presumably the prime factor in determining the grain size of samples. The grains grow rapidly at the sintering temperature in the first stage until the liquid phase residing at the grain boundaries reaches certain critical thickness such that the liquid–solid interfacial energy dominates the mechanism of grain growth.  相似文献   

4.
In this study, the effect of SiO2 doping on the sintering behavior, microstructure, and dielectric properties of BaTiO3-based ceramics was investigated. Silica was added to (Ba0.96Ca0.04)(Ti0.85Zr0.15)O3 (BCTZ) powder prepared using the solid-state method. SiO2-doped BCTZ ceramics with a high density and a uniform grain size were obtained and sintered at 1220°C in a reducing atmosphere. A second phase (BaTiSiO5) existed in samples when SiO2 was added in excess of 1%. The amount of the second phases was observed to increase as the number of SiO2 additives increased. It was found that BCTZ ceramics sintered with SiO2 are helpful in reducing the sintering temperature for a typical thick film and MLCC applications. However, there were disadvantageous effects on the dielectric properties with mere addition of SiO2 addition (3% and 5%) due to higher formation of BaTiSiO5. Doping with a small amount of silica can improve the sintering and dielectric properties of BCTZ ceramics. In addition, to understand the effect of the BaTiSiO5 phase on the dielectric properties of BCTZ ceramics, the BaTiSiO5 composition was synthesized from individual BaCO3, TiO2, and SiO2 powders using conventional solid-state methods. X-ray diffraction results show the presence of mainly the crystalline phase, BaTiSiO5, in the sintered ceramics.  相似文献   

5.
The influence of co-additions of crystalline TiO2 and SiO2 fillers (10 wt% addition in total) to BaO–ZnO–B2O3–SiO2 glass on resultant properties was investigated from the viewpoint of applying the material to the barrier ribs of plasma display panels. The substitution of SiO2 for TiO2 reduced the dielectric constant significantly, while it maintained high optical reflectance and appropriate coefficient of thermal expansion (CTE) in the case when TiO2 alone was used. A 5–7.5 wt% SiO2 addition with 2.5–5 wt% TiO2 under the constraint of 10 wt% total fillers demonstrated an optical reflectance of about 55%, a CTE of about 8.3 × 10−6 K−1 (compatible with glass panels), and a dielectric constant of about 7.5, which are promising properties for the barrier rib application.  相似文献   

6.
Compacts of TiB2 with densities approaching 100% are difficult to obtain using pressureless sintering. The addition of SiC was very effective in improving the sinterability of TiB2. The oxygen content of the raw TiB2 powder used in this research was 1.5 wt%. X-ray photoelectron spectroscopy showed that the powder surface consisted mainly of TiO2 and B2O3. Using vacuum sintering at 1700°C under 13–0.013 Pa, TiB2 samples containing 2.5 wt% SiC achieved 96% of their theoretical density, and a density of 99% was achieved by HIPing. TEM observations revealed that SiC reacts to form an amorphous phase. TEM-EELS analysis indicated that the amorphous phase includes Si, O, and Ti, and X-ray diffraction showed the reaction to be TiO2+ SiC → SiO2+ TiC. Therefore, the improved sinterability of TiB2 resulted from the SiO2 liquid phase that was formed during sintering when the raw TiB2 powder had 1.5 wt% oxygen.  相似文献   

7.
The microstructure and microwave dielectric properties of a (1− x )(Mg0.95Ni0.05)TiO3− x Ca0.6La0.8/3TiO3 ceramics system have been investigated. The system was prepared using a conventional solid-state ceramic route. In order to produce a temperature-stable material, Ca0.6La0.8/3TiO3 was added for a near-zero temperature coefficient (τf). With partial replacement of Mg2+ by Ni2+, the dielectric properties of the (1− x )(Mg0.95Ni0.05)TiO3− x Ca0.6La0.8/3TiO3 ceramics can be promoted. The microwave dielectric properties are strongly correlated with the sintering temperature and the composition. An excellent Q × f value of 118,000 GHz can be obtained for the system with x =0.9 at 1325°C. For practical application, a dielectric constant (ɛr) of 24.61, a Q × f value of 102,000 GHz, and a temperature coefficient of resonant frequency (τf) of −3.6 ppm/°C for 0.85(Mg0.95Ni0.05)TiO3−0.15Ca0.6La0.8/3TiO3 at 1325°C are proposed. A parallel-coupled line band-pass filter is designed and simulated using the proposed dielectric to study its performance.  相似文献   

8.
It has been shown that polydimethylsiloxane (PDMS)–CaO–SiO2–TiO2 and poly(tetramethylene oxide) (PTMO)–CaO–TiO2 hybrids form apatite on their surfaces in a simulated body fluid (SBF) and show mechanical properties similar to those of human cancellous bones. In the present study, changes, caused by soaking in SBF, were measured in the mechanical properties of PDMS–CaO–SiO2–TiO2 hybrids with different CaO and TiO2 contents and PTMO–CaO–TiO2 hybrids with different CaO contents. Significant decreases in the strength and strain at failure of the hybrids were observed for the PDMS–CaO–SiO2–TiO2 hybrids with high CaO or TiO2 contents and PTMO–CaO–TiO2 hybrids with a high CaO content after soaking in SBF for 4 w. This indicates that incorporation of a large amount of CaO component into the hybrids should result in the deterioration of the hybrids in the body environment.  相似文献   

9.
The influence of supports on the preparation of TiO2 nanoparticles by the adsorption phase technique is studied in detailed. Series temperature experiments of two types of supports (named as SiO2 A and B) were used. Energy-dispersive analysis by X-ray indicates that the concentration of TiO2 on both supports decreases with temperature increasing. TiO2 quantity on SiO2 A decreases sharply between 40° and 60°C, whereas the temperature range for SiO2 B is between 30° and 50°C. X-ray diffraction (XRD) shows that grain size of TiO2 particles on two SiO2 surfaces is all below 7 nm. It is also shown by XRD that particles on SiO2 A decrease sharply as in the quantity curve of TiO2, but particles on SiO2 B all change gradually and TiO2 particles on SiO2 B are more uniform in transmission electron spectroscopy. The similarly of both supports is considered to be the reason for the similar changes in Ti concentration, and the different characteristics of the internal/external surface lead to variant quantity and grain size, as well as characteristics of TiO2.  相似文献   

10.
Dielectric properties of the system (1 − x)(La1/2Na1/2)TiO3 x Ca(Fe1/2Nb1/2)O3, where 0.4 # x # 0.6, have been investigated at microwave frequencies. The temperature coefficient of resonant frequency (τf), nearly 0 ppm/°C, was realized at x = 0.58. These ceramics had perovskite structure and showed relatively low dielectric losses. A new dielectric material applicable to microwave devices having Q · f of 12000–14000 GHz and a dielectric constant (εr) of 59–60 has been obtained at 1300–1350°C for 5–15 h sintering.  相似文献   

11.
A furnace for use in conjunction with the X-ray spectrometer was developed which was capable of heating small powdered specimens in air to temperatures as high as 1850°C. This furnace was also used for the heating and quenching of specimens in air from temperatures as high as 1850°C. An area of two liquids coexisting between 20 and 93 weight % TiO2 above 1765°± 10°C. was found to exist in the system TiO2–SiO2, which is in substantial agreement with the previous work of other investigators. The area of immiscibility in the system TiO2–SiO2 was found to extend well into the system TiO2–ZrO2–SiO2. The two liquids were found to coexist over a major portion of the TiO2 (rutile) primary-phase area with TiO2 (rutile) being the primary crystal beneath both liquids. The temperature of two-liquid formation in the ternary was found to fall about 80°C. with the first additions of ZrO2 up to 3%. With larger amounts of ZrO2 the change in the temperature of the boundary of the two-liquid area was so slight as to be within the limits of error of the temperature measurement. Primary-phase fields for TiO2 (rutile), tetragonal ZrO2, and ZrTiO4 were found to exist in the system TiO2–ZrO2–SiO2. SiO2 as high cristobalite is known to exist in the system TiO2–ZrO2–SiO2.  相似文献   

12.
We characterized SiO2–TiO2 nano-hybrid particles, prepared using the sol–gel method, using high-resolution transmission microscopy. A few nanometer-ordered TiO2 anatase crystallites could be observed on the monodispersed SiO2 nanoparticle surface. The quantum size effect of the TiO2 anatase crystallites is attributed to the blue shift of the absorption band. The rough surface of the SiO2–TiO2 nano-hybrid particles was derived from the developed growth planes of the TiO2 anatase crystallites, grown from fully hydrolyzed Ti alkoxide that did not react with acetic acid during the crystallization process at 600°C thermal annealing.  相似文献   

13.
The role of liquid phase in the enhancement of the PTCR (positive temperature coefficient of resistance) effect in (Ba0.7Sr0.3)TiO3 (BST) with the addition of AST (4Al2O3· 9SiO2· 3TiO2) is investigated in this paper. The AST–BST samples were characterized with optical microscopy, transmission electron microscopy, energy-dispersive spectroscopy, and impedance spectroscopy. Microscopic observations showed that slower cooling might facilitate the precipitation of the (Ba,Sr)TiO3 phase from the liquid phase on matrix grains since the amount of liquid phase was reduced with a decreasing cooling rate. Impedance spectroscopy indicated that this variation accompanied the change in the intrinsic properties of grain boundaries, which could not be explained by well-known oxidation effects. With the aid of a brick-layer model and high-resolution transmission electron microscopy (HRTEM), it appeared that the change in electrical characteristics of grain boundaries with decreasing cooling rate originated from the precipitation of (Ba,Sr)TiO3. Finally, the effect of precipitated (Ba,Sr)TiO3 on the PTCR characteristics is discussed in terms of the acceptor-state density and the polarization state at grain boundaries.  相似文献   

14.
In the TiO2-SiO2 system, anatase solid solutions (ss) containing up to similar/congruent ∼15 mol% SiO2 are formed in the as-prepared state by the hydrazine method. The lattice parameters a and c decrease linearly from 0.3785 to 0.3776 nm and from 0.9514 to 0.9494 nm, respectively, with increased SiO2 content. At high temperatures, the solid solutions by transformation decompose into rutile and amorphous SiO2. The anatase(ss) powders have been characterized for particle size and surface area. They consist of very fine particles (7-25 nm). Surface areas at low temperatures are very high and do not drop below 60 m2/g at 1000°C. Nanostructured anatase(ss) ceramics, with greaterthan/equal to 99.5% of theoretical density and an average grain size of 72 nm, have been fabricated by hot isostatic pressing for 1 h at 850°C and 196 MPa. Their mechanical and electrical properties have been examined.  相似文献   

15.
Compound formation in the system PbO-SiO2 was studied; the results are contrasted with those previously reported. Fifteen binary phases, 4 of which had not been reported, were prepared in the present study. The new phases include Pb5Si8O21, an orthorhombic polymorph of PbSiO3, Pb3SiO5, and a high-SiO2 phase containing ∼ 60 mol% SiO2. It was shown that Pb3SiO5 is thermodynamically stable relative to Pb2SiO4 and 4PbO.SiO2 below 640±5°C. A revised phase equilibrium diagram is presented.  相似文献   

16.
The deposition rate and film quality of In2O3-SnO2 (ITO) transparent electrodes processed by sputtering are improved when using dense sputtering targets. Unfortunately, ITO ceramics do not sinter easily. It is shown that addition of TiO2 (<1 wt%) to ITO greatly increases densification without degrading electrical properties of sputtered films. The influence of ZrO2 and SiO2 was also investigated.  相似文献   

17.
In this work several complementary techniques have been employed to carefully characterize the sintering and crystallization behavior of CaO–Al2O3–ZrO2–SiO2 glass powder compacts after different heat treatments. The research started from a new base glass 33.69 CaO–1.00 Al2O3–7.68 ZrO2–55.43SiO2 (mol%) to which 5 and 10 mol% Al2O3 were added. The glasses with higher amounts of alumina sintered at higher temperatures (953°C [lower amount] vs. 987°C [higher amount]). A combination of the linear shrinkage and viscosity data allowed to easily find the viscosity values corresponding to the beginning and the end of the sintering process. Anorthite and wollastonite crystals formed in the sintered samples, especially at lower temperatures. At higher temperatures, a new crystalline phase containing ZrO2 (2CaO·4SiO2·ZrO2) appeared in all studied specimens.  相似文献   

18.
Equilibrium relations in the system NiO–TiO2–SiO2 in air have been investigated in the temperature range 1430° to 1660°C. The most conspicuous feature of the phase relations is the existence of a cation-excess spinel-type phase, in addition to NiO and NiTiO3, on the liquidus surface and at subsolidus temperatures down to 1430°C. Three invariant points have been located on the liquidus. There is a peritectic at 1540°C characterized by coexisting NiO ( ss ), spinel( ss ), cristobalite, and liquid of composition 47 wt% NiO, 29 wt% TiO2, and 24 wt% SiO2. Two eutectics are present, one at 1480°C, with spinel( ss ), NiTiO3, cristobalite, and liquid (42 wt% NiO, 43 wt% TiO2, and 15 wt% SiO2), as the coexisting phases. The other is at 1490°C with NiTiO3, rutile, cristobalite, and liquid (32 wt% NiO, 56 wt% TiO2, and 12 wt% SiO2). A liquid miscibility gap extends across the diagram from the two bounding binary systems NiO–SiO2 and TiO2–SiO2.  相似文献   

19.
A procedure is presented for growing single crystals of (PbxSr1-x)TiO3 by passing solvent zones through poly-crystalline rods of the same composition (THM). The solvent zone composition for homogeneous solid solution growth was chosen from the pseudoquaternary system 2PbO: 1B2O3-2SrO:1B2O3-PbTiO3-SrTiO3. Crystals with compositions throughout the complete range of PbTiO3-SrTiOs solid solutions were grown. Emphasis was placed on crystal compositions near (Pb0.25Sr0.78) TiO3 which have Curie temperatures just below room temperature. The dielectric constants, Curie temperatures, and optical properties of these single crystals are presented. Nonlinear dielectric and electrooptic behaviors are also demonstrated.  相似文献   

20.
The phase relations of the systems ZrO2–TiO2 and ZrO2–TiO2–SiO2 were investigated. X-ray diffraction techniques served as the principal means of analysis. The binary system ZrO2–TiO2 was found to be one of partial solid solutions with no intermediate compounds. A eutectic point was found to exist at 50 to 55 weight % ZrO2 and 1600°C. A preliminary investigation of the ternary system ZrO2–TiO2–SiO2, although not extensive, resulted in a better understanding of this system, with a fairly accurate location of some of its boundary lines. A eutectic point was located at 2% ZrO2, 10% TiO2, and 88% SiO2 at approximately 1500°C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号