首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Penclomedine is a multi-chlorinated alpha-picoline derivative that has demonstrated activity in several murine breast cancer models and is currently in clinical testing for use against solid tumors. This study evaluates the metabolism of penclomedine in several in vitro hepatic models, including microsomes, fresh liver slices, and the isolated perfused rat liver (IPRL). Both human and mouse liver slices as well as human and mouse liver microsomes under aerobic conditions resulted in limited metabolism of penclomedine to several oxidized metabolites, including penclomic acid, 4-demethylpenclomic acid, and 4-demethylpenclomedine. Microsomes under anaerobic conditions vigorously produced mainly reduced metabolites, primarily penclomedine dimers. This is in contrast to in vivo data, which showed rapid metabolism of penclomedine to primarily 4-demethylpenclomedine. The IPRL preparation, however, metabolized 50 microM penclomedine 90% within 90 min, producing primarily 4-demethylpenclomedine and penclomic acid. These were formed in roughly equimolar amounts and did not undergo significant further metabolism over 4 hr. Numerous highly polar biliary metabolites were also found. The IPRL preparation thus seems to most accurately reflect the in vivo situation.  相似文献   

2.
The in vivo disposition and in vitro metabolism of rifabutin, a new spiropiperidylrifamycin, were studied in rats and in microsomes from rat liver and enterocytes, respectively. After i.v. doses of 1,5, 10 and 25 mg/kg the systemic clearance was 0.7 to 1.0 liters/hr/kg; the volume of distribution was 4.4 liters/kg for the 1 mg/kg dose and 7.4 to 7.7 liters/kg for the 5 to 25 mg/kg doses, and the half-life ranged from 4.4 to 9.1 hr. Urinary and fecal excretion over 0 to 96 hr after i.v. administration of 25 mg/kg [14C]rifabutin accounted for 40.1 and 52.2% of the dose, respectively. Exteriorization of the bile duct showed that approximately 24% of the dose was eliminated in bile, > or = 98% as metabolites. Bioavailability after oral administration of 25 and 1 mg/kg rifabutin was > 90% and 44%, respectively, suggesting significant first-pass metabolism of the lower dose. Concentrations of rifabutin in gastric juice were 10 to 17 times higher than in blood, indicating extensive secretion into the stomach. Experiments with the isolated small intestinal loop demonstrated direct exsorption of the drug into the lumen. The rate of rifabutin metabolism by enterocyte microsomes was > 10 times higher than that by liver microsomes, i.e., 84 and 8 pmol/min/mg protein, respectively. Biotransformation of rifabutin in vivo and in vitro was markedly induced by dexamethasone and inhibited by erythromycin, suggesting that CYP3A is involved in the metabolism of rifabutin. Several metabolites, including 20-OH-rifabutin and 27-O-demethyl-rifabutin, isolated from urine and microsomes were identified by mass spectrometry and nuclear magnetic resonance spectroscopy.  相似文献   

3.
1. In conventional single-gel culture systems for primary hepatocytes, rapid loss of drug metabolizing capacities is a common feature and parallels general loss of function. An organotypical (double gel) culture technique for primary hepatocytes is established by enclosing the cells within two layers of extra cellular matrix. This serves to imitate the in vivo microenvironment within the space of Dissé. Using rat hepatocytes, this technique has been shown previously to maintain protein synthetic functions in vitro and to allow more efficient P450A-dependent biotransformation of drugs than a standard single-gel culture system. 2. The aim was to test the capacity of this organotypical culture model for primary rat and human hepatocytes to generate drug metabolites in a typical species-dependent pattern. 3. Urapidil, an antihypertensive drug, was used as a test compound, since it is metabolized in vivo in a species-dependent manner in rat and man. 4. Primary rat and human hepatocytes were cultured within two layers of collagen and exposed to 2.25 micrograms/ml urapidil for periods of 1-24 h at 3 days in culture. Urapidil metabolites were measured using hplc. 5. Metabolite M1 (hydroxylated product) was produced preferentially in human hepatocyte cultures, and metabolites M2/M3 (O-demethylated, N-demethylated product) were preferentially generated in rat cultures. This corresponded to the in vivo pattern found in man and rat, respectively. 6. Since in vitro urapidil metabolism by human and rat hepatocytes cultured in a double-gel system reflects that in vivo, it is suggested that information from such a system may be useful to predict the metabolic pathway of novel xenobiotics and to direct further toxicological evaluation.  相似文献   

4.
F2-isoprostanes are prostaglandin-like compounds derived from nonenzymatic free radical-catalyzed peroxidation of arachidonic acid. 8-epi-Prostaglandin (PG) F2alpha, a major component of the F2-isoprostane family, can be conveniently measured in urine to assess noninvasively lipid peroxidation in vivo. Measurement of major metabolites of endogenous 8-epi-PGF2alpha, in addition to the parent compound, may be useful to better define its formation in vivo. 2,3-Dinor-5,6-dihydro-8-epi-PGF2alpha is the only identified metabolite of 8-epi-PGF2alpha in man, but its endogenous levels are unknown. In addition to this metabolite, we have identified another major endogenous metabolite, 2,3-dinor-8-epi-PGF2alpha, in human and rat urine. The identity of these compounds, present at the pg/ml level in urine, was proven by a number of complementary approaches, based on: (a) immunoaffinity chromatography for selective extraction; (b) gas chromatography-mass spectrometry for structural analysis; (c) in vitro metabolism in isolated rat hepatocytes; and (d) chemical synthesis of the enantiomer of 2,3-dinor-5, 6-dihydro-8-epi-PGF2alpha as a reference standard. In humans, the urinary excretion rate of both dinor metabolites is comparable with that of 8-epi-PGF2alpha. Both metabolites increase in parallel with the parent compound in cigarette smokers, and they are not reduced during cyclooxygenase inhibition. Another beta-oxidation product, 2, 3,4,5-tetranor-8-epi-PGF2alpha, was identified as a major product of rat hepatocyte metabolism. In conclusion, at least two major beta-oxidation products of 8-epi-PGF2alpha are present in urine, which may be considered as additional analytical targets to evaluate 8-epi-PGF2alpha formation and degradation in vivo.  相似文献   

5.
To determine whether the clinical adverse interactions of terfenadine with azole antifungals and macrolide antibiotics may be related to inhibition of terfenadine biotransformation, an in vitro system was developed to follow the metabolism of terfenadine by rat liver S9 or human liver microsomes. When test compounds were coincubated with terfenadine, the metabolites formed and unchanged terfenadine was quantitatively analyzed by HPLC. Five metabolites of terfenadine were formed by rat liver S9: predominantly alcohol metabolite (III), with four minor metabolites--azacyclonol (I), acid metabolite (II), an unidentified metabolite (IV), and a new ketone metabolite (V). By human liver microsomes, two major metabolites were formed: azacyclonol (I) and alcohol metabolite (III). Ketoconazole, fluconazole, itraconazole, erythromycin, clarithromycin, and troleandomycin potently inhibited terfenadine metabolism by human liver (IC50 = 4-10 microM), but inhibition by rat liver was weaker (IC50 = 87-218 microM) and 18% maximally for troleandomycin. Other CYP3A substrates (cyclosporin A, naringenin, and midazolam) also demonstrated potent inhibition of terfenadine biotransformation in human liver microsomes (IC50 = 17-24 microM). Substrates of other P450 families [sparteine (CYP2D6), caffeine (CYP1A), and diclofenac (CYP2C)] only very weakly inhibited terfenadine metabolism. Dixon plot analyses for human liver revealed competitive/reversible inhibition by the azole antifungals and macrolide antibiotics of azacyclonol and alcohol metabolite formations.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
The metabolism of paclitaxel and docetaxel by human liver microsomes was investigated in vitro. The main metabolite of paclitaxel formed in vitro was the 6 alpha-hydroxypaclitaxel: its formation largely exceeded the formation of other metabolites hydroxylated on the lateral chain by rat liver microsomes and initially characterized in rat bile. In contrast, in vitro studied showed that the initial metabolite of docetaxel resulted from the hydroxylation of the tert-butyl of the lateral chain at C13 and that the same metabolites were formed in human and animal models. Comparison of individual CYP protein content of human microsomes and catalytic activities with taxoid biotransformation, showed that 2 distinct isoforms were assigned to the 6 alpha-hydroxylation (CYP2C) and to the hydroxylation of the lateral chain (CYP3A4). Chemical and immunological inhibitions confirmed these assumptions. The effect of antineoplastic drugs potentially associated with taxoids during chemotherapy has been tested in vitro on paclitaxel and docetaxel biotransformations. In the therapeutic range, vincristine, vinblastine, doxorubicine and cisplatin elicited a moderate or no inhibition of paclitaxel and docetaxel metabolism, as well as cimetidine, ranitidine and diphenylhydramine used to prevent major side effects associated with taxoid therapy. In patients given barbiturates, the hydroxylation on the lateral chain of paclitaxel and docetaxel was markedly stimulated and resulted from the induction of CYP3A isoforms. These results clearly demonstrated that the biotransformation of paclitaxel and docetaxel by human liver microsomes was supported by 2 distinct CYP proteins and that drug interactions could modify the therapeutic efficiency of taxoids during chemotherapy.  相似文献   

7.
1. The metabolism and absorption of chlorothalonil and corresponding diglutathione and dicysteine conjugates was studied using isolated everted gastrointestinal sacs of the conventional and germ-free rat. An HPLC method was used to analyse mucosal and serosal fluids. Thiol metabolites of chlorothalonil were determined by GC/MS. 2. Low absorption of the substrates was observed, with < 4% of the radioactivity being recovered from the serosal buffers and the digestive tissues. A major part of the radioactivity was recovered from the mucosal fluids and it corresponded to unchanged chlorothalonil. Traces of unchanged chlorothalonil and mono-, di- and trimethylthio metabolites were present in serosal fluids as well as unidentified polar peaks. An important transformation (> 75%) of the chlorothalonil conjugates was observed. The di- and trimethylthio metabolites of chlorothalonil were detected from both sides of the everted gut sac of rat incubated with the diglutathione and dicysteine conjugates. 3. Few differences were observed between the conventional and germ-free rat: absorption was higher in the duodenum of germ-free rat, but tissue retention was more significant in the duodenum of the conventional rat.  相似文献   

8.
Following oral administration of linogliride, a hypoglycemic agent, to rat (50 mg kg-1), dog (30 mg kg-1), and man (100 mg per subject), plasma, urine, and fecal extract sample pools were obtained. Nine metabolites plus unchanged linogliride were isolated and identified. The number of metabolites identified were: rat (5), dog (9), and man (1). In each species, more than 78% of the administered dose was recovered in the urine pools. Identified metabolites were estimated to account for > 82% of the total amounts of drug-related sample in urine pools and > 50% in plasma and fecal extract pools. Formation of linogliride metabolites in the three species can be described by four proposed pathways: pyrrolidine hydroxylation, aromatic hydroxylation, morpholine hydroxylation, and imino-bond cleavage. Comparison of the proposed metabolic pathways among species reveals a similarity between rat and dog. In these two species, pyrrolidine hydroxylation was quantitatively the most important pathway, with 5-hydroxylinogliride and dominant hypoglycemic active metabolite in all sample pools. Further oxidation of 5-hydroxylinogliride resulted in the formation of five minor metabolites. The other three pathways appeared to be quantitatively unimportant. Metabolism of linogliride in man occurred to a very limited extent. More than 90% of the total linogliride-related material in plasma was the unchanged drug. Greater than 76% of the administered dose was excreted unchanged in the urine. Only 5-hydroxylinogliride was identified in minor amounts in human samples.  相似文献   

9.
Small intestinal metabolism and transport of sirolimus, a macrolide immunosuppressant with a low and highly variable oral bioavailability, were investigated using small intestinal microsomes and intestinal mucosa in the Ussing chamber. After incubation of sirolimus with human and pig small intestinal microsomes, five metabolites were detected using high performance liquid chromatography/electrospray-mass spectrometry: hydroxy, dihydroxy, trihydroxy, desmethyl and didesmethyl sirolimus. The same metabolites were generated by human liver microsomes and pig small intestinal mucosa in the Ussing chamber. Anti-CYP3A antibodies, as well as the specific CYP3A inhibitors troleandomycin and erythromycin, inhibited small intestinal metabolism of sirolimus, confirming that, as in the liver, CYP3A enzymes are responsible for sirolimus metabolism in the small intestine. Of 32 drugs tested, only known CYP3A substrates inhibited sirolimus intestinal metabolism with inhibitor constants (Ki) equal to those in human liver microsomes. The formation of hydroxy sirolimus by small intestinal microsomes isolated from 14 different patients ranged from 28 to 220 pmol.min-1.mg-1 microsomal protein. In the Ussing chamber, >99% of the sirolimus metabolites reentered the mucosa chamber against a sirolimus gradient, indicating active countertransport. Intestinal drug metabolism and countertransport into the gut lumen, drug interactions with CYP3A substrates and inhibitors in the small intestine and an 8-fold interindividual variability of the intestinal metabolite formation rate significantly contribute to the low and highly variable bioavailability of sirolimus.  相似文献   

10.
Roxithromycin has been shown to be a relatively weak inhibitor of cytochrome P450 (P450 or CYP)-dependent drug oxidations, compared with troleandomycin. The potential for roxithromycin and its major metabolites found in human urine [namely the decladinosyl derivative (M1), O-dealkyl derivative (M2), and N-demethyl derivative (M3)] to inhibit testosterone 6beta-hydroxylation after metabolic activation by CYP3A4 was examined and compared with inhibition by troleandomycin and erythromycin in vitro. Of roxithromycin and its studied metabolites, M3 was the most potent in inhibiting CYP3A4-dependent testosterone 6beta-hydroxylation by human liver microsomes and was activated to the inhibitory P450.Fe2+-metabolite complex to the greatest extent. Roxithromycin and its metabolites were N-demethylated by human liver microsomes, although the rates were slower than those measured with troleandomycin and erythromycin as substrates. Recombinant human CYP3A4 in a baculovirus system coexpressing NADPH-P450 reductase was very active in catalyzing the N-demethylation of roxithromycin, M1, and M2, as well as troleandomycin, erythromycin, and M3. The order for inhibition of CYP3A4-dependent testosterone 6beta-hydroxylation activities by these macrolide antibiotics in the recombinant CYP3A4 system was estimated to be troleandomycin > erythromycin >/= M3 >/= M2 > M1 >/= roxithromycin. Erythromycin, roxithromycin, and its metabolites all failed to inhibit CYP1A2-dependent (R)-warfarin 7-hydroxylation and CYP2C9-dependent (S)-warfarin 7-hydroxylation but did inhibit CYP3A4-dependent (R)-warfarin 7-hydroxylation. These results suggest that roxithromycin itself is not as potent an inhibitor of CYP3A4 activities as are troleandomycin and erythromycin, probably because of the slower metabolism of this compound to metabolites M1, M2, and M3 in humans.  相似文献   

11.
1. The in vitro metabolism of 3,3',4,4'-tetrachloro-[14C]-biphenyl ([14C]-TCB) by hepatic microsomes from the Wistar rat was investigated with liver microsomes from the male, pregnant female and foetus. 2. Three hydroxylated metabolites (4-OH-3,3',4,5'-tetrachlorobiphenyl, 5-OH-3,3',4,4'-tetrachlorobiphenyl, and 6-OH-3,3',4,4'-tetrachlorobiphenyl) were identified by hplc and gc-ms after incubations of liver microsomes from the beta-naphthoflavone-pretreated male rat and TCB-treated pregnant rat. No metabolites of [14C]-TCB were found after incubation with foetal liver microsomes from dams pretreated with [14C]-TCB. The results indicate that the in vivo accumulation of 4-OH-tetraCB in the foetal compartment is probably due to transplacental transport rather than the formation of this metabolite in the foetus. 3. Pretreatment of the male rat with beta-naphthoflavone substantially induced the formation of hydroxylated metabolites, but pretreatment with phenobarbital and dexamethasone was without effect. Based on in vitro incubations of liver microsomes from the beta-naphthoflavone pretreated male rat, an apparent Km and Vmax of 4.5 microM and 240 pmol/mg protein/min respectively was determined for the metabolism of [14C]-TCB. The formation of phenolic metabolites of [14C]-TCB was most likely dependent on P4501A induction.  相似文献   

12.
1. Precision-cut liver slices represent a suitable and convenient in vitro preparation for studying metabolism and toxicity mechanisms of drugs and toxic chemicals. Particularly in the case of human liver slices, cryopreservation would enable more efficient utilization of this scarce and irregularly available tissue. 2. Liver slices from consecutive human livers were cryopreserved using a method previously developed for rat and monkey liver slices. This procedure involves incubation in 12% dimethyl sulphoxide for 30 min on ice and direct immersion into liquid nitrogen. 3. Functional integrity of cryopreserved human liver slices, as compared with that of fresh liver slices, was maintained at 66 +/- 8% (alanine aminotransferase activity retained in the slices), 78 +/- 7% (urea synthesis), 88 +/- 14% (testosterone hydroxylation), 84 +/- 7% (N-deethylation of lidocaine) and 88 +/- 10% (total O-deethylation of 7-ethoxycoumarin). The ratios of testosterone metabolites did not change on cryopreservation. 4. These results show that the cryopreserved human liver slices retained the measured drug metabolism activities. Therefore, this cryopreservation method is suitable for storing liver slices to be used for comparing drug metabolism patterns, at least qualitatively, between species.  相似文献   

13.
1. The macrolide tacrolimus (FK506), used as an immunosuppressant, is a cytochrome P450 (CYP) 3A substrate in the liver. The metabolism of tacrolimus and the transport of its metabolites in the pig gut was studied in the Ussing chamber. Tacrolimus and its metabolites were quantified by h.p.l.c./mass spectrometry. 2. In the Ussing chamber, demethyl, didemethyl, hydroxy and hydroxy-demethyl tacrolimus were generated. Their formation was concentration- and time-dependent. The metabolite pattern was not different from that after incubation of tacrolimus with human small intestinal microsomes. 3. The metabolite formation was highest in the duodenum and declined in the order duodenum > jejunum > ileum > colon > stomach. 4. Since tacrolimus metabolism was inhibited by the specific CYP3A inhibitors, troleandomycin and ketoconazole, we concluded that these enzymes are involved in intestinal metabolism of tacrolimus. 5. Tacrolimus metabolites re-entered the mucosa chamber (> 90%) and passed through the small intestinal preparation into the serosa chamber. 6. It is concluded that tacrolimus is metabolized in the intestine, that the metabolites are able to re-enter the gut lumen and also enter into the portal vein and that small intestinal metabolism and transport is at least in part responsible for the low oral bioavailability of tacrolimus.  相似文献   

14.
Naphthalene produces selective necrosis of Clara cells in the mouse but not in the rat. The pulmonary toxicity depends on cytochrome P450-mediated metabolism; however, the selective pulmonary toxicity of naphthalene in the mouse does not correspond to tissue-selective covalent binding of reactive naphthalene metabolites in vivo. These studies compare reactive metabolite binding in target and nontarget cells and in various subcompartments of mouse lung and characterize, by sodium dodecyl sulfate polyacrylamide gel electrophoresis, the proteins to which arylating metabolites are bound. Reactive metabolite binding was substantially higher in incubations of [3H]-naphthalene with distal bronchioles and isolated Clara cells than with explants of trachea or bronchus from the mouse. Likewise, binding was substantially higher in incubations of murine Clara cells than in identical incubations with mouse hepatocytes (nontarget cells) or rat trachea cells (nonsusceptible species). These data show a good correlation between cellular susceptibility to toxicity and the amount of reactive metabolite bound in vitro. Concentrations of adduct were highest in the medium and the nuclear/cell debris fraction (1000 x g pellet) of isolated Clara cells incubated with naphthalene; very small amounts of adduct were noted in pellets isolated at 20,000 or at 100,000 x g (mitochondrial and microsomal fractions) or in cytosol. These observations were consistent with the finding that adduct concentrations in bronchoalveolar lavage were substantially higher than in the lung at low doses of naphthalene and suggest that monitoring adducts in lavage may serve as a useful biomarker of exposure and effect.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
The metabolism of Org 30659 [(17alpha)-17-hydroxy-11-methylene-19-norpregna-4, 15-dien-20-yn-3-one], a new potent progestagen currently under clinical development by NV Organon for use in oral contraceptive and hormone replacement therapy, was studied in vivo after oral administration to rats and monkeys and in vitro using rat, rabbit, monkey, and human liver microsomes and rat and human hepatocytes. After oral administration of [7-3H]Org 30659 to rats and monkeys, Org 30659 was extensively metabolized in both species. Fecal excretion appeared to be the main route of elimination. In rats, opening of the A-ring, resulting in a 2-OH,4-carboxylic acid, 5alpha-H metabolite of Org 30659, was the major metabolic route in vivo. Other metabolic routes involved the introduction of an OH group at C15beta, followed by a shift of the Delta15-double bond to a 16/17-double bond with subsequent removal of the OH group at C17 and reduction of the 3-keto,Delta4 moiety followed by sulfate conjugation of the 3-OH substituent. These metabolic routes observed in vivo were also major routes in incubations with rat hepatocytes. In rat liver microsomes, Org 30659 was metabolized by reduction of the 3-keto,Delta4 moiety. Rat hepatocyte incubations with Org 30659 were more representative of the in vivo metabolism of Org 30659, compared with rat microsomal incubations. Both in vitro and in vivo, the majority of the metabolites were 3alpha-OH,4,5alpha-dihydro derivatives. In monkeys, Org 30659 was mainly metabolized at the C3- and C17-positions in vivo. The 3-keto moiety was reduced to both 3beta-OH and 3alpha-OH substituents. In addition to phase I metabolites, glucuronic acid conjugates were observed in vivo. In monkey liver microsomes, the 6beta-OH metabolite of Org 30659 was the major metabolite present. Similar to the monkey liver microsomes, rabbit and human liver microsomes converted Org 30659 to the 6beta-OH metabolite. This metabolite was also the major metabolite in incubations with human hepatocytes.  相似文献   

16.
When the kinetics of interconversion of deoxy[14C]glucose ([14C]DG) and [14C]DG-6-phosphate ([14C]DG-6-P) in brain in vivo are estimated by direct chemical measurement of precursor and products in acid extracts of brain, the predicted rate of product formation exceeds the experimentally measured rate. This discrepancy is due, in part, to the fact that acid extraction regenerates [14C]DG from unidentified labeled metabolites in vitro. In the present study, we have attempted to identify the 14C-labeled compounds in ethanol extracts of brains of rats given [14C]DG. Six 14C-labeled metabolites, in addition to [14C]DG-6-P, were detected and separated. The major acid-labile derivatives, DG-1-phosphate (DG-1-P) and DG-1,6-bisphosphate (DG-1,6-P2), comprised approximately 5 and approximately 10-15%, respectively, of the total 14C in the brain 45 min after a pulse or square-wave infusion of [14C]DG, and their levels were influenced by tissue glucose concentration. Both of these acid-labile compounds could be synthesized from DG-6-P by phosphoglucomutase in vitro. DG-6-P, DG-1-P, DG-1,6-P2, and ethanol-insoluble compounds were rapidly labeled after a pulse of [14C]DG, whereas there was a 10-30-min lag before there was significant labeling of minor labeled derivatives. During the time when there was net loss of [14C]DG-6-P from the brain (i.e., between 60 and 180 min after the pulse), there was also further metabolism of [14C]DG-6-P into other ethanol-soluble and ethanol-insoluble 14C-labeled compounds. These results demonstrate that DG is more extensively metabolized in rat brain than commonly recognized and that hydrolysis of [14C]DG-1-P can explain the overestimation of the [14C]DG content and underestimation of the metabolite pools of acid extracts of brain. Further metabolism of DG does not interfere with the autoradiographic DG method.  相似文献   

17.
Penclomedine [3,5-dichloro-4,6-dimethoxy-2-(trichloromethyl)pyridine], an antitumor agent, is currently in Phase I clinical trials and is believed to be a prodrug. In these studies, cerebellar effects have been dose limiting. Previous studies identified 4-demethylpenclomedine (4-DM-PEN) as the major plasma metabolite in rodents and humans. 4-DM-PEN was demonstrated to be an antitumor-active metabolite of penclomedine in vivo when evaluated against the penclomedine-sensitive MX-1 human breast tumor xenograft implanted either s.c. or intracerebrally and is believed to be on the metabolic activation pathway of penclomedine. Because earlier studies revealed an absence of neurotoxic cerebellar effects for 4-DM-PEN in contrast to penclomedine in a rat model, this metabolite may be a candidate for an alternative to penclomedine in the clinic for treatment of breast cancer or brain tumors, if the cerebellar effects of penclomedine preclude its further clinical development. Because neither penclomedine nor 4-DM-PEN were very active in vitro, the metabolism of penclomedine was also investigated using rat liver microsomes in an attempt to identify the ultimate active form of the drug. Metabolites and putative metabolites were prepared by chemical synthesis for antitumor evaluation in vitro and in vivo. A reductive metabolite, alpha,alpha-didechloro-PEN, was observed to be much more cytotoxic than penclomedine or 4-DM-PEN in vitro, but evaluation of this and the other metabolites and putative metabolites in vivo against the MX-1 tumor failed to identify any active metabolite among the structures evaluated other than 4-DM-PEN. The limited activity of 4-DM-PEN in vitro indicates that it, like penclomedine, is also a prodrug, demonstrating a need for additional studies on the metabolic activation of penclomedine to identify the ultimate active form of the drug.  相似文献   

18.
The sympathomimetic drug phenylephrine recently has been labeled with 11C for use in PET studies of cardiac sympathetic innervation. Previous reports using isolated perfused rat heart models indicate that phenylephrine is metabolized by intraneuronal monoamine oxidase (MAO). This report compares the imaging characteristics, neuronal selectivity and kinetics of (-)-[11C]phenylephrine (PHEN) to the structurally similar but MAO-resistant analog (-)-[11C]-meta-hydroxyephedrine (HED), an established heart neuronal marker. METHODS: Fourteen healthy volunteers were studied with PET and PHEN. Ten had paired studies with HED; four of the 10 were scanned a second time with each tracer after oral administration of desipramine, a selective neuronal transport blocker. Hemodynamic and electrocardiographic responses were monitored. Blood levels of intact radiotracer and radiolabeled metabolites were determined from venous blood samples taken during the PET study. Myocardial retention indices for both tracers were calculated. RESULTS: No hemodynamic or electrocardiographic effects were observed with either tracer. PHEN showed reduced myocardial retention at 50 min compared to HED; however, image quality and uniformity of distribution were comparable. PHEN cleared from myocardium with a mean half-time of 59 +/- 5 min, while myocardial levels of HED remained constant. PHEN metabolites appeared in the blood approximately three times faster than HED metabolites. Desipramine pretreatment markedly reduced (> 60%) myocardial retention of both PHEN and HED. CONCLUSION: PHEN provides PET images of human heart comparable in quality and uniformity to HED. Like HED, PHEN localizes in the sympathetic nerves of the heart. However, the more rapid efflux of PHEN, that is likely mediated by MAO, may provide information on the functional status of cardiac sympathetic neurons unobtainable with HED.  相似文献   

19.
1. In a human liver microsomal system, barnidipine was converted into three primary metabolites, an N-debenzylated product (M-1), a hydrolyzed product of the benzyl-pyrrolidine ester (M-3) and an oxidized product of the dihydropyridine ring (M-8). 2. Involvement of CYP3A in the three primary metabolic pathways was revealed by the following studies: (a) inhibition of CYP3A, (b) a correlation study using 10 individual human liver microsomes and (c) cDNA-expression studies. The secondary metabolites, M-2 and M-4 (pyridine forms of M-1 and M-3), were most likely generated from M-8 but were unlikely from M-1 or M-3. Involvement of CYP3A in the secondary pathways of metabolism is also suggested. 3. The possibility of interactions between barnidipine and coadministered drugs was examined in vitro. The formation rate of the primary metabolites was little affected by warfarin, theophylline, phenytoin, diclofenac and amitriptyline at concentrations of 200 microM, but was inhibited by glibenclamide, simvastatin and cyclosporin A. IC50 for the latter drugs was estimated to be > 200, 200 and 20 microM respectively, which was roughly > 200, 6000 and 50 times higher than their respective therapeutic plasma levels, suggesting that interactions with cyclosporin A, a CYP3A inhibitor, are of possible clinical relevance.  相似文献   

20.
Through the combined use of stable isotope labeling and gas chromatographic mass spectrometric analysis, the metabolic patterns for propoxyphene have been determined in laboratory animals and man. The rat and dog eliminated propoxyphene and its metabolites principally via the bile, while the rabbit more closely resembled man in excreting the metabolic products into urine. Metabolites in rat and rabbit existed as conjugates, whereas in dog and man the metabolites were excreted as a mixture of the free and unconjugated forms. The primary route of metabolism in all species studied was N-demethylation. However, the rat and rabbit extensively hydroxylated propoxyphene and its metabolites prior to elimination. Metabolites arising from ester hydrolysis were found in rat and man. N-acetylated products were identified in all four species. A metabolite formed from cyclization and dehydration of dinorpropoxyphene was isolated in urine and was further identified as a circulating metabolite in dog plasma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号