首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel zwitterionic imidazolium-based ionic liquid (IL) surfactant, 1-carboxymethyl-3-dodecylimidazolium inner salt, was synthesized. The molecule structure was confirmed by means of electrospray ionization mass spectrometry, 1H nuclear magnetic resonance and elemental analysis. The isoelectric point (pI) is 3.8 ± 0.1 at 35 ± 0.1 °C. The other important physicochemical parameters such as the critical micelle concentration (CMC), the surface tension at CMC (γCMC), the adsorption efficiency (pC 20), the surface pressure at CMC (ΠCMC), the maximum surface excess (Γm), the minimum molecular cross-sectional area (A min), the value of CMC/C 20 and the average number of aggregation (N m) were determined by surface tension and steady-state fluorescence probe methods, respectively.  相似文献   

2.
The physicochemical and interfacial properties of the monomeric surfactants cetyltrimethyl ammonium bromide (CTAB), cetyltriphenyl phosphonium bromide (CTPB), tetradecyl triphenyl phosphonium bromide (TTPB), cetyldiethylethanol ammonium bromide (CDEEAB), cetyltrimethyl ammonium chloride (CTACl), tetradecyltrimethyl ammonium bromide (TTAB), and a gemini surfactant (C16-3-C16, 2Br) at different pH (3.1, 7.0, and 7.75) have been investigated by conductivity and surface tension measurements at 300 K. The critical micellar concentration (CMC), degree of micellar ionization (α), surface excess concentration (Гmax), minimum surface area per molecule of surfactant (A min), Gibbs free energy of micellization (∆G m0), surface pressure at the CMC (π CMC), and the Gibbs energy of adsorption (∆G ads0) of the monomeric surfactants have also been determined. The CMC, α and Гmax, increase with increasing pH whereas A min decreases.  相似文献   

3.
A series of carboxylic ester‐containing imidazolium‐based zwitterionic surfactants, namely, monoalkyl 2‐(3‐methylimidazolium‐1‐yl) succinate inner salts (CnMimSU, n = 8, 10, 12 and 14), have been synthesized. Their structures were confirmed by 1H NMR, 13C NMR and FTIR. The typical physicochemical properties parameters such as isoelectric point, critical micelle concentration (CMC), surface tension at CMC (γCMC), surface pressure at CMC (ΠCMC), adsorption efficiency (pC20), the maximum surface excess (Γm), the minimum molecular cross‐sectional area (Amin) and the value of CMC/C20 were determined. The effect of the long‐chain length on the important physicochemical properties of CnMimSU was studied. It is found that the surface activity of CnMimSU is enhanced with the long‐chain length increases.  相似文献   

4.
Four diakylimidazolium ionic liquids, namely 1-alkyl-3-dodecylimidazolium bromides ([C12C n im]Br) with the same dodecyl long-chain tail (C12) and the short alkyl side chain (C n , n = 1–4), were synthesized, and their molecule structures were confirmed by ESI–MS, 1H-NMR and elemental analysis. The physicochemical properties of [C12C n im]Br (n = 1–4) were determined by means of surface tension and fluorescence probe methods, respectively. It was found that elongation of the side chain length will bring about an enhancement of surface activity. Along with the side chain length increasing, the critical micelle concentration (CMC), surface tension at CMC (γ CMC), the maximum surface excess (Γm), micellar aggregation number (N m) and micellar microenvironment polarity of [C12C n im]Br decrease, while adsorption efficiency (pC 20), surface pressure at CMC (ΠCMC), the minimum molecular cross-sectional area (A min) at air-solution interfaces and CMC/C 20 ratio increase.  相似文献   

5.
Three series of nonionic surfactants derived from polytriethanolamine containing 8, 10, and 12 units of triethanolamine were synthesized. Structural assignment of the different compounds was made on the basis of FTIR and 1H‐NMR spectroscopic data. The surface parameters of these surfactants included critical micelle concentration (CMC), surface tension at the CMC (γCMC), surfactant concentration required to reduce the surface tension of the solvent by 20 mN m?1 (pC20), maximum surface excess (Γmax), and the interfacial area occupied by the surfactant molecules (Amin) using surface tension measurements. The micellization and adsorption free energies were calculated at 25 °C.  相似文献   

6.
The surface properties [effectiveness of surface tension reduction (γCMC), critical micelle concentration (CMC), efficiency of surface tension reduction (pC 20), maximum surface excess concentration (ΓCMC), minimum area/molecule at the interface (A min), and the CMC/C 20) ratio] of well-purified N-substituted glycine derivatives, having the structural formula RC(O)N(R′)CH2COONa, where RC(O)=lauroyl, myristoyl, or oleoyl, and R′=Et, Pr, Bu, CH2CH2OH or CH2CH2CH2OCH3, were investigated at 25°C in hard river water and distilled water. These surfactants show greater surface activity in hard river water than in distilled water. The effect of both the main alkyl chain R and the N-substituent R′ on surface properties was elucidated, the oleoyl group showing properties equivalent to that of a C16 saturated acyl group. A linear relationship was observed between the pC 20 or CMC values and the number of carbon atoms in the alkyl chain R or in R′ when it was alkyl. With increase in the number of carbon atoms in either R or the N-substituent R′ when it is alkyl, both pC 20 and micelle-forming ability increase, although the effect of R′ on the foregoing two surface properties is lower than that of R. When R′ is (CH2)3OCH3, however, the results suggest that R′ is only partly removed from contact with the aqueous phase either upon adsorption at the water/air interface or upon micellization. It increases A min, is equivalent only to an ethyl group in its effect on pC 20 and to a methyl group in its effect on CMC, and, in contrast to the effect of R′ when it is alkyl, produces no increase in the CMC/C 20 ratio. As a result, γCMC increases with R when R′ is alkyl and decreases with R when R′ is (CH2)3OCH3.  相似文献   

7.
A homologous series of new surface-active 1,1-bis{[3-(N,N-dimethylamino)propyl]amido}alkane-di-N-oxides were synthesized in the reaction of an appropriate diethyl 2-alkylmalonate with N,N-dimethylamino-1,3-propanediamine followed by oxidation with aqueous hydrogen peroxide. The adsorption isotherms of their aqueous solutions were measured and evaluated to obtain adsorption parameters: critical micelle concentration (CMC), surface excess concentration (ΓCMC), equilibrium surface tension at the CMC (γCMC), cross-sectional area of the adsorbed surfactant molecule (A CMC), efficiency of surface adsorption (pC20), standard free energies of adsorption (ΔG°ads), and micellization (ΔG°CMC). All investigated di-amidoamines and di-N-oxides were practically non-toxic to selected bacteria and yeasts. These compounds are readily biodegradable in the Closed Bottle Test inoculated with activated sludge. Surface and biological properties showed that this group of N-oxide-type compounds has high surface activity and fulfills requirements for environmental acceptance.
Andrzej PiaseckiEmail:
  相似文献   

8.
A series of carboxylate gemini surfactants, which contain two hydrocarbon chains linked by amide groups, two carboxylate groups, a flexible alkane spacer were synthesized by three-step reactions and named alkylidene–bis-(N,N′-dodecyl-carboxypropylamides) (2C12H25CnAm; n = 2, 3, 4, 6, 8 is the number of methylene groups of the spacer), their structures were confirmed by FTIR,1H NMR, and LC–MS/TOF, and their purity checked by HPLC. The micellar properties with increasing spacer chain length of these gemini surfactants were determined by surface tension methods. The critical micelle concentration (CMC) varies slightly with spacer chain length; surface tension at CMC(γCMC), the tendency of micellization versus adsorption, CMC/C20, the minimum area per surfactant molecule at the air/solution interface (ACMC), all decrease with increasing spacer chain length; surface reduction efficiency, pC20, the surface excess at the air/solution interface (ГCMC) increase with increasing spacer chain length. The results probably indicate that increasing spacer chain length of these carboxylate gemini surfactants will increase spacer incorporation into the double hydrophobic chain.  相似文献   

9.
Synthesis of a new glycolipid and biosurfactant analog, methyl-12-[1′-β-d-lactosyl]-octadec-9-ene-1-oate (LOD), has been done from easily accessible renewable resources, namely, lactose and ricinoleic acid from castor oil. Surface and thermodynamic properties at the air/water interface including critical micelle concentration (CMC), aggregation number (<N>), maximal densities (Γmax), minimal area per molecule (A min), surface pressure at the CMC (ΠCMC ) free energy of adsorption (ΔG ad 0), and free energy of micelle formation per mole of monomer unit (ΔG m 0) were investigated. The results indicate that this particular glycolipid, because of branching in the hydrophobic chain, has a comparatively large A min value and hence a very low CMC, aggregation number, and less free energy of micellization and adsorption at the air/water inter-face than molecules with a straight hydrophobe, for example, n-dodecyl-β-d-maltoside. The effects of electrolytes (NaCl, KCl, CaCl2, and AlCl3) of the same ionic strength and of increasing ionic strength on the interfacial microenvironment of LOD were also investigated. For the same anion, Cl, and the same ionic strength, different cations were found to have different effects on the CMC of LOD. With increasing ionic strength, different electrolytes were found to have different effects on the interfacially located, highly hydrated aqueous layer of the LOD micelle. The water structure-making or-breaking ability of different cations from the interfacial microenvironment of LOD was found to depend on the charge/radius ratio of the cations.  相似文献   

10.
A series of novel cationic gemini surfactants, C n H 2n+1 N+(CH3)2CH2CHOHCHOHCH2N+(CH3)2C n H 2n+1 ·2Br, have been synthesized, and their surface properties were investigated in water, 0.1 N NaCl, and 0.1 N NaBr at 25°C. From surface tension-log molar concentration plots, the pC20, critical micelle concentration (CMC), and γCMC values have been determined, and the area/molecule at the aqueous solution/air interface was calculated. When the number of carbon atoms in the alkyl (hydrophobic) chains is above a certain number, which depends upon the molecular environment, the surface activity of the compounds is less than expected. This appears to be due to formation of small, soluble aggregates below the CMC. Equilibrium constants calculated for this aggregation indicate that a series of oligomers are formed.  相似文献   

11.
In order to determine the structure‐performance relationship of nonionic‐zwitterionic hybrid surfactants, N,N‐dimethyl‐N‐dodecyl polyoxyethylene (n) amine oxides (C12EOnAO) with different polyoxyethylene lengths (EOn, n = 1–4) were synthesized. For homologous C12EOnAO, it was observed that the critical micelle concentration (CMC), the maximum surface excess (Γm), CMC/C20, and the critical micelle aggregation number (Nm,c) decreased on going from 1 to 4 in EOn. However, there were concomitant increases in surface tension at the CMC (γCMC), minimum molecular cross‐sectional area (Amin), adsorption efficiency (pC20), and the polarity ([I1/I3]m) based on the locus of solubilization for pyrene. The values of log CMC and Nm,c decreased linearly with EOn lengthening from 1 to 4, although the impact of each EO unit on the CMC of C12EOnAO (n = 1–4) was much smaller than that typically seen for methylene units in the hydrophobic main chains of traditional surfactants. Compared to the structurally related conventional surfactant N,N‐dimethyl‐N‐dodecyl amine oxide (C12AO), C12EOnAO (n = 1–4) have smaller CMC, Amin, and CMC/C20, but larger pC20, Γm, and Nm,c with a higher [I1/I3]m. This may be attributed to the moderately amphiphilic EOn (n = 1–4) between the hydrophobic C12 tail and the hydrophilic AO head group.  相似文献   

12.
Interfacial properties (surface tension, σ, and critical micelle concentration, CMC) of aqueous solutions of Tween 20 (polyoxyethylene sorbitan monolaurate) and/or bovine serum albumin (BSA) were evaluated. Temperature, Tween 20 concentration in the aqueous phase, BSA/Tween 20 ratio, and aqueous phase composition [water, ethanol (0.5, 1.0, and 2.5 M), and sucrose (0.5 M)] were the variables studied. The CMC of Tween 20 was determined by surface tension measurements (Wilhelmy plate method). The existence of BSA-Tween 20 interactions was deduced from surface tension measurements. The results show that the effect of temperature on CMC depends on the aqueous phase composition, but the σ value at CMC, σCMC, does decrease as temperature is increased. The CMC and σCMC values also depend on the aqueous phase composition. In aqueous ethanol solutions, the CMC increases, but σCMC decreases. However, in sucrose aqueous solutions, the CMC decreases, but there is no significant effect on σCMC. The BSA-Tween 20 interactions at the interface depend on both Tween 20 concentration (C) and solute in the bulk phase. In water and aqueous solutions of ethanol and sucrose, σ values decrease in the presence of protein at C<CMC but are practically independent of C at C>CMC. This is an indication that the interfacial characteristics of the mixed film are determined by either the protein or the lipid at the higher and lower protein/lipid ratio, respectively. In the intermediate region, the existence of BSA-Tween 20 interactions dominates the interfacial characteristics of mixed films.  相似文献   

13.
Surface properties of a series of highly purified linear alkyl benzene sulfonates were extensively studied in hard river water. The effects of water hardness, alkyl chain length and position of the phenyl sulfonate group in the molecule on such surface properties as pC20, critical micelle concentration (CMC), γCMC, CMC/C20 ratio, and minimum area per molecule at the interface are discussed in detail. The position of phenyl sulfonate group in the molecule was found to have a pronounced effect on the CMC, γCMC value, CMC/C20 ratio, and, to the contrary, a relatively small effect on the pC20 value. The linear relationship between pC20 or-log CMC, and m, the number of carbon atoms in the alkyl chain, was found for surfactants with the phenyl sulfonate group either at the terminal position or at the more central position in the molecule. γCMC decreases but the CMC value increases, when the position of phenyl sulfonate group moves from the terminal toward a more central position of the molecule, reflecting the “Hartley Effect” resulting from the branched alkyl chain.  相似文献   

14.
A new group of nonionic dicephalic saccharide amides, N-dodecyl-N,N-bis[(3-d-gluconylamido)propyl]-amine, N-dodecyl-N,N-bis[(3-d-glucoheptonylamido)propyl]-amine, and N-alkyl-N,N-bis[(3-lactobionylamido)propyl]amines (alkyl: n-C12H25′ n-C16H33′, n-C18H37) were synthesized and characterized. Their structure and purity were confirmed by means of 1H and 13C nuclear magnetic resonance analysis and electrospray ionization mass spectrometry. Carbon spectra were verified using a DEPT experiment. The surface and interfacial properties such as critical micelle concentration (CMC), standard free energy of micellization, ΔG CMC, surface excess concentration, ΓCMC, and surface area demand per molecule, A CMC, were determined. The tertiary nitrogen atom seems to have a surprising effect on surfactnat packing at the interface.  相似文献   

15.
Long-chain alkylnaphthalene sulfonates were synthesized by means of a Wurtz-Fittig reaction, and the basic properties were studied in water at 30°C. Through surface tension measurements, the following values were determined: the critical micelle concentration (CMC) and the surface tension at the CMC (γCMC). The following values were calculated: area per molecule at the CMC (ACMC), standard free energy change of micellization (ΔG mic o ), standard free energy of adsorption (ΔG ad o ), and the “efficiency” of a surfactant in reducing surface tension (pC20). The micelle aggregation numbers were measured through steady-state fluorescence-quenching methods. As the chain length of the hydrocarbon of n-alkylnaphthalene sulfonate increased, the Krafft temperature increased, the surface tension decreased, the value of CMC decreased, pC20 increased, ΔG ad o and ΔG mic o became more negative, and the micelle aggregation number increased. The results showed that sodium α-(n-decyl)naphthalene sulfonate (DNS) had a high pC20, low Krafft temperature, and lower CMC than other surfactants in this study. Thus, DNS and the other n-alkylnaphthalene surfactants studied exhibit desirable properties that may be of value in some fields such as detergency, oil recovery, and dyes.  相似文献   

16.
The surface properties [effectiveness of surface tension reduction (γCMC) critical micelle concentration (CMC), efficiency of surface tension reduction (pC 20), maximal surface excess concentration (Γmax), minimal area/molecule at the interface (A min), and the (CMC/C 20) ratio] of some well-purified N-alkanoyl-N-methyl glucamines and related polyol-based N-methyl amide-type surfactants, having the structural formula RC(O)N(Me)CH2(CHOH)xCH2OH, where RC(O)=undecanoyl, lauroyl, tridecanoyl, myristoyl, and x=1,3, and 4, were investigated at 25°C in distilled water and 0.1 M NaCl. Water solubility of these compounds does not simply depend on the number of hydroxyl groups in the molecule but is associated with the balance between intermolecular hydrogen bonds and hydrogen bonds formed with water molecules. The fundamental interfacial properties, such as CMC and γCMC and two thermodynamic parameters, standard free energy of adsorption and standard free energy of micellization, were found to be significantly dependent on the hydrophobic acyl chain rather than on the number of CHOH groups in the hydrophilic moieties. By contrast, the practical performance properties were greatly dependent on the nature of the hydrophilic group. As a whole, these surfactants had desirable foaming properties and efficient wetting abilities. Furthermore, synergism in foaming and wetting abilities was observed in a binary mixture of these surfactants with an alkyloxyethylene sulfate.  相似文献   

17.
A series of polyether-based silicone surfactants with different hydrophobic chains (trimethylsiloxy, triethylsiloxy, and triisopropylsiloxy) were synthesized. The molecular structures were confirmed using 1H nuclear magnetic resonance (NMR), 13C NMR, 29Si NMR, and fourier transform infrared spectroscopy (FT-IR). The effect of the siloxane groups on the physicochemical properties, surface tension (γ), critical micelle concentration (CMC), surface tension at the CMC (γCMC ), adsorption efficiency (pC20), surface pressure at the CMC (πCMC ), maximum surface excess (Γmax ), single silicone surfactant molecule at the air/water interface (Amin ), and the standard free energy of adsorption (), of the polyether-based silicone surfactants was investigated. Results indicate that the polyether-based silicone surfactants can reduce the surface tension of water to approximately 25–31 mN m−1 and the surface activity of silicone surfactants is enhanced with increasing branched trimethylsiloxyl and sterically hindered siloxane groups.  相似文献   

18.
Surface and micellization behavior of some cationic monomeric surfactants, viz., cetyldiethylethanolammonium bromide (CDEEAB), cetyldimethylethanolammonium bromide (CDMEAB), tetradecyldiethylethanolammonium bromide (TDEEAB) and dimeric surfactants, i.e., alkanediyl‐α, ω‐bis(dimethylhexadecylammonium bromide) (C16‐s‐C16, 2Br? where s = 4, 12), butanediyl‐1,4‐bis(dimethyldodecylammonium bromide (C12‐4‐C12, 2Br?) and 2‐butanol‐1,4‐bis(dimethyldodecylammonium bromide) (C12‐4(OH)‐C12, 2Br?), was studied in water‐organic solvents [10 and 20 % v/v ethylene glycol (EG) and diethylene glycol (DEG)] by conductivity, surface tension and steady‐state fluorescence methods at 300 K. The main focus of the present work is on the study of the effect of organic solvents on the critical micelle concentration (CMC), Gibbs free energy of micellization (ΔG°m), Gibbs free energy of transfer (ΔG°trans), Gibbs adsorption energy (ΔG°ads) and some interfacial parameters such as the surface excess concentration (Γmax), minimum area per surfactant molecule (Amin) and surface pressure (πCMC). The aggregation number (Nagg) and Stern‐Volmer quenching constant (KSV) were also determined by the steady‐state fluorescence method. It was observed that Nagg decreased with increasing volume percent of organic solvent. The results exhibited an increase in CMC in water‐organic solvents as compared to the respective surfactants in pure water. The negative values of ΔG°m and ΔG°ads indicate a spontaneous micellization process. The thermodynamics of micellization revealed that the micellization‐reducing efficiency of glycols increases with the concentration and the number of ethereal oxygens in the glycol.  相似文献   

19.
A homologous series of new surface-active 1,1-bis{[3-(N,N-dimethylamino)ethyl]-amido}alkane-di-N-oxides were synthesized in the reaction of an appropriate diethyl 2-alkylmalonate with N,N-dimethylethylenediamine followed by oxidation with an aqueous solution of hydrogen peroxide. The adsorption isotherms of their aqueous solutions were measured and evaluated to obtain adsorption parameters: critical micelle concentration (CMC), surface excess concentration (ΓCMC), equilibrium surface tension at the CMC (γ CMC), cross-sectional area of the adsorbed surfactant molecule (A CMC), standard free energies of adsorption and micellization
Anna Krasowska (Corresponding author)Email:
  相似文献   

20.
Several equation models were investigated to find the relationship between temperature (T). number of ethylene oxide (EO) units (n) or the hydrophile-lipophile balance (HLB) and the surface and thermodynamic properties of some ethoxylated alkylphenol-formaldehyde polymeric nonionic surfactants. These properties include critical micelle concentration (CMC), free energy of micellization (ΔGmic), surface tension at CMC (7CMC), effectiveness (γCMC) and efficiency (pC20) of surfactant to reduce the surface tension of water. The values of the ratio CMC/C2(π = 20) were also considered. The linear multiple regression technique was employed to determine the parameters of the equations and to choose the best forms with the highest values of R2 and F-ratio which reflect the goodness and the reliability of the fit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号