共查询到20条相似文献,搜索用时 128 毫秒
1.
肖利芳 《数字社区&智能家居》2021,(14):181-183
图像识别精度的高低直接影响着态势感知系统的性能,针对在复杂异构环境中提取图像关键要素难以识别的问题.该文提出了一种概率神经网络识别图像的方法.应用这种方法,首先,该文通过粗糙集属性约简原始数据,过滤掉冗余属性;然后,该文使用概率神经网络这种模型对提取的数据集进行分类训练.这是一种有效、可行的图像识别方法,与其传统方法相... 相似文献
2.
为了提高图像识别的全面性及准确性,研究了一种基于卷积神经网络(Convolutional Neural Network,CNN)的图像识别方法。该方法利用萤火虫算法获取分割阈值,实现图像目标和背景的分割;利用灰度共生矩阵和基于加速分割测试的特征(Features From Accelerated Segment Test,FAST)算法提取图像纹理和角点特征;以特征为输入,利用卷积神经网络实现目标类别识别。测试结果表明,设计的基于CNN的识别方法的F1分数为最大值,均在0.8以上,能够更全面、更准确地识别图像中的目标类型。 相似文献
3.
随着信息技术的不断发展,数字影像技术已经渗透到生产生活的各个领域。该技术的传输和存储技术已经非常先进,但关键的图像识别技术一直是国内外的研究中心。由于传统图像识别方法的局限性,在搜索过程中还存在很多问题。神经网络为传统图像识别问题提供了一种新方法,因为它们需要较少的信息和复杂状态映射的实现。本文提出了一种基于BP神经网络的图像识别模型,利用神经网络研究。实验结果表明,该模型是高效的,具有良好的检测率。 相似文献
4.
本文介绍了一种以神经网络为基础并结合专家系统的方法进行图像识别的系统。着重介绍了在设计中较为困难的部分-抽象概念的表示和推理机的设计,这些是系统的核心部分决定着系统的整体性能。 相似文献
5.
6.
对轻量级卷积神经网络MobileNet V2的模型结构进行改进,将深度可分离卷积中的激活函数ReLU替换成Leaky ReLU,从而避免神经元死亡问题,倒置残差卷积中的跨越连接添加Dropout层,增大模型的泛化能力.实验结果表明,预测结果的总体准确率达到91.41%,最高精确率为95.12%,最高召回率为97.39%... 相似文献
7.
8.
为解决医学上糖尿病性视网膜病变图像人工识别困难、精度差等问题,提出一种基于多特征融合的卷积神经网络识别方法。在VGG-16模型的基础上,通过融合每层网络上的局部特征,增强模型的特征提取能力。选用Softmax分类器,使病变图像识别更加准确。使用OpenCV图像处理工具采用加噪、上下左右不同角度翻转、调节对比度等5种方式扩充训练集。实验结果表明,基于多特征融合的深度学习框架图像识别系统在数据集上的平均识别精度达到94.23%,相较于Alex-Net、Google-Net、Compact-Net、ResNet-101等模型分别提高了10.56%、7.80%、6.01%、0.02%,验证了该方法的有效性。该模型具有很好的鲁棒性。 相似文献
9.
基于概率神经网络的寄生虫卵显微图像识别 总被引:2,自引:0,他引:2
病原体(虫卵)检测是诊断寄生虫病的最常用和最可靠的方法。该文对寄生虫卵显微图像的自动识别进行了研究,设计了一个基于概率神经网络的分类器。通过对血吸虫等9种寄生虫卵的显微图像进行自动识别,取得了平均正确识别率为99.23%的较好结果。 相似文献
10.
基于卷积神经网络的图像识别技术已经逐渐运用在了日常的农业生产中,并且在农产品的分类、鉴别等方面有着重大意义。论文结合具体的农业生产,介绍了目前卷积神经网络的常见模型结构及其应用方式,发现了现有模型的不足之处,并提出具有针对性的发展方向建议。 相似文献
11.
提出了一种基于约束规划的选择性神经网络集成方法,在训练出个体网络之后,用约束规划方法选择出相对最佳的个体网络组成神经网络集成。理论分析和实验结果表明,该方法设计过程简单,能够以较小的运算代价提高神经网络集成的泛化能力。 相似文献
12.
提出了一种利用FCMAC(Fuzzy Cerebellar Model Articulation Controller)神经网络进行优化的方法。该方法由学习过程和优化过程两部分组成。对于许多没有模型可参考的实际过程,使用该方法只需要传感器的观测信息就能进行优化。仿真结果证明了该方法的有效性与优越性,进而提出了在实际应用中进行优化的一种方案。 相似文献
13.
14.
神经网络集成方法具有比单个神经网络更强的泛化能力,却因为其黑箱性而难以理解;决策树算法因为分类结果显示为树型结构而具有良好的可理解性,泛化能力却比不上神经网络集成。该文将这两种算法相结合,提出一种决策树的构造算法:使用神经网络集成来预处理训练样本,使用C4.5算法处理预处理后的样本并生成决策树。该文在UCI数据上比较了神经网络集成方法、决策树C4.5算法和该文算法,实验表明:该算法具有神经网络集成方法的强泛化能力的优点,其泛化能力明显优于C4.5算法;该算法的最终结果昆示为决策树,显然具有良好的可理解性。 相似文献
15.
16.
一种基于神经网络的力传感器的数据融合方法 总被引:2,自引:0,他引:2
电阻应变式测力传感器是目前国内外广泛使用的一种传感器。但它在使用的过程中,经常由于载荷分布不均,造成其精度的降低,使其输出特性呈现严重的非线性。引起这种误差的主要原因有:传感器的高度不足、斜载、偏心等。人工神经网络是由大量处理单元(神经元)组成的非线性大规模自适应系统,能够表达任意复杂的动态特性。因此,针对传感器的高度不足、斜载这两种情况,该文提出了利用前向多层神经网络进行数据融合。以筒式力传感器为例,阐述了其网络模型的建立过程。结果表明在高度降低和斜载的情况下,利用神经网络传感器仍能保持很高的精度。这在工程实际中是非常有用的。 相似文献
17.
18.
神经网络凭借其对非线性的处理能力被广泛应用于实际系统的黑箱建模,但在理论上可以任意逼近模型的神经网络在实际应用中的能力是有限的,对于复杂动态特性的实际系统基于神经网络的模型在逼近效果和泛化能力上都存在不足.提出了基于神经网络的混合模型建模方法,建立的模型由通过传统方法建立的基本系统和由神经网络建立的逼近实际系统和基本模型之间差值的不确定部分组成,用此方法建模大大提高了模型的精度和对不同输入的泛化能力,通过对多个系统的建模仿真结果验证其可行性. 相似文献
19.
针对常用聚类方法不能有效处理噪声数据的问题,本文结合神经网络具有自适应性的特点,提出基于神经网络的聚类(NN_Cluster)模型,并设计了基于自适应共振理论的神经网络聚类模型(ARTNN_Cluster)和基于自组织特征映射的神经网络聚类模型(SOMNN_Cluster)。标准数据集上的实验结果表明,与传统的K_means聚类方法相比,本文提出的基于神经网络的聚类模型有效地克服了传统方法的噪声问题,得到了较好的聚类效果。 相似文献
20.
基于语义网络的神经网络系统 总被引:3,自引:0,他引:3
曹绍火 《计算机工程与应用》2001,37(11):96-97,118
文章通过分析语义网络知识表示及神经网络研究的各自特点与现状,提出了将基于语义网络的知识表示方法引入神经网络知识处理中的设想,并作了一些初步的探讨。 相似文献