首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
综述了FCC汽油烷基化脱硫的特点与优势.探讨了FCC汽油烷基化反应的机理及用于该反应的固体酸催化剂应满足的条件.最初建议应加大开发新型FCC汽油烷基化催化剂的研究力度,以期推进具有自主知识产权的FCC汽油烷基化深度脱硫技术的工业化进程.  相似文献   

2.
综述了加氢脱硫、吸附脱硫、溶剂萃取脱硫、烷基化脱硫等FCC汽油精制脱硫技术的研究进展,详细介绍了烷基化脱硫技术在FCC汽油中的脱硫机理与应用情况,最后指出了炼油行业的发展方向。  相似文献   

3.
FCC汽油烷基化脱硫研究   总被引:1,自引:0,他引:1  
分别采用大孔磺酸树脂NKC-9及FCC汽油烷基化催化剂SW—I对FCC汽油进行静态及动态烷基化脱硫研究。结果表明,SW—I烷基化脱硫操作条件更为缓和,其催化活性及寿命均优于NKC-9树脂。在反应温度60℃、反应时间60 min和剂油质量比1:100的条件下,SW—I烷基化脱硫汽油硫含量降至181.7μg·g~(-1),脱硫率63.49%,收率85.30%。SW—I对不同硫含量的FCC汽油均具有一定的脱硫效果,脱硫适应性较强。通过对汽油烷基化反应前后硫化物的分布分析发现,烷基化反应使FCC汽油中的大部分噻吩类化合物反应生成沸点更高的产物,通过蒸馏分离将其除去,达到脱硫目的。  相似文献   

4.
马健  刘冬梅  王海彦  赵伟林 《当代化工》2013,(9):1288-1290,1293
综述了烷基化脱硫技术脱除FCC汽油中噻吩硫的研究进展。介绍了噻吩烷基化反应机理以及在FCC汽油精制中的工艺,详细阐述了噻吩烷基化催化剂要求及发展现状。建议为推动烷基化深度脱硫工业化进程,应大力发展对新型烷基化催化剂的研究。  相似文献   

5.
在简要介绍烷基化脱硫原理基础上,综述了近年来对FCC汽油中噻吩和烷基噻吩等小分子噻吩类硫化合物烷基化反应催化剂的研究进展,着重从分子筛、负载型杂多酸及固体磷酸、离子液体和离子交换树脂等方面来介绍催化裂化汽油烷基化脱硫催化剂的研究应用,最后对汽油烷基化脱硫催化剂的研究重点进行了展望。  相似文献   

6.
非加氢脱硫技术研究与应用进展   总被引:1,自引:0,他引:1  
综述了吸附脱硫、氧化脱硫、沉淀脱硫、生物脱硫、烷基化脱硫等几种非加氢脱硫技术的研究进展,特别是烷基化脱硫技术在FCC汽油中的脱硫机理与应用情况,指出非加氢脱硫技术,尤其是烷基化脱硫技术和生物脱硫技术具有较好的应用前景.  相似文献   

7.
综述了FCC汽油烷基化脱硫催化剂近几年来的最新进展,分析比较了各类催化剂的优缺点,重点论述了离子液体和负载型杂多酸两类催化剂在FCC汽油烷基化脱硫中的研究现状。离子液体和负载型杂多酸催化剂因催化活性高和环境友好等优点具有很好的研究应用前景,最后指出了其未来的研究方向。  相似文献   

8.
烷基化硫转移反应脱硫是一种非加氧脱硫方法,该法首先利用FCC汽油中的烯烃与噻吩类硫化物进行烷基化反应,形成高沸点的烷基噻吩类硫化物,然后通过蒸馏分离达到脱硫目的.实验分别在FCC汽油和模拟汽油中考察了大孔磺酸树脂Amberlyst 35催化汽油烷基化硫转移的反应活性,并研究了反应温度对反应过程的影响.结果表明 Amberlyst 35树脂可有效催化烷基化硫转移反应的发生,80~140℃温度范围内,在剂油质量比为1:11、反应时间为1 h的条件下,对FCC汽油中主要硫化物的转化率均达到90%以上,可以满足催化精馏烷基化脱硫操作的需要.转化了的烯烃主要发生了低聚反应,随反应温度的升高,烯烃二聚的选择性降低,容易生成更多高沸点胶质,会降低催化剂的稳定性和产品的收率.  相似文献   

9.
曹赟  柯明 《应用化工》2013,42(6):1070-1074
制备了一种带—SO3H官能团的Brnsted酸性离子液体[SO3H-C6H4-CH2-mim]HSO4,应用于FCC汽油烷基化脱硫。结果表明,离子液体对噻吩类硫化物均有较好的脱除效果,脱硫率可达70%以上;离子液体催化大港FCC汽油烷基化脱硫反应的较佳工艺条件为:反应温度75℃,反应时间120 min左右,离子液体加入量10%,二烯烃加入量3%。在此条件下,离子液体可将大港FCC汽油中的总硫含量由186μg/g降至90μg/g,脱硫率51.6%,汽油收率96.1%,抗爆指数下降1.4个单位。  相似文献   

10.
介绍了劣质催化裂化原料的特点,分析了催化裂化汽油清洁化对策,应从提高FCC汽油质量关键应从FCC进料预处理、优化FCC加工过程以及FCC汽油精制等3方面出发.采用有效的降烯烃技术以及选择性加氢和氧化一萃取等脱硫技术对催化裂化汽油进行清洁化处理。认为应注重发展加氢技术,增强加氢在清洁油品生产中的作用;适当减少FCC汽油所占比例,增加异构化油、烷基化油、重整汽油比例,缩小与国外成品油结构组成的差距。  相似文献   

11.
针对世界各国清洁汽油的发展趋势,叙述和分析了中国在生产清洁汽油方面的现状和各种生产清洁燃料的新技术,尤其是生产低硫、超低硫汽油技术。介绍了汽油中硫化物的来源和组成,分析了国内外汽油质量规格标准的进展,着重讨论了催化裂化(FCC)汽油脱硫技术及其经济性。  相似文献   

12.
采用旋转带蒸馏仪对国内某炼油厂预加氢后催化汽油进行窄馏分切割,分析各窄馏分硫和烯烃分布规律,为全馏分催化汽油分馏提供精确的切割方案。实验结果表明,通过将切割轻汽油总硫含量控制在指标要求上限,最大量将烯烃切入轻汽油中,降低重汽油烯烃含量,可减少在加氢脱硫过程中由于烯烃饱和导致的辛烷值损失。  相似文献   

13.
H. Mizutani  Y. Korai  I. Mochida   《Fuel》2007,86(17-18):2898-2905
The selective removal of sulfur species in atmospheric residue (AR) is strongly wanted since the species of the hydrodesulfurized AR (HDS-AR) define the sulfur content of the product gasoline in the subsequent fluid catalytic cracking (FCC). Hence, the correlations between sulfur species in HDS-AR and FCC gasoline were explored in the present study. HDS-AR was fractionated into vacuum gas oil (VGO) and vacuum residue (VR) by distillation. Reactivities of HDS-AR (S = 3000 mass ppm) and its VGO (S = 900 mass ppm) were measured by micro activity test to clarify which fractions and sulfur compounds in HDS-AR were converted into gasoline and its sulfur species. The yields and sulfur contents of the product gasoline were 45.0 mass% and 52 mass ppm from HDS-AR and 47.7 mass% and 14 mass ppm from VGO, respectively. The sulfur content of the gasoline from HDS-AR was markedly higher than that from HDS-VGO. The saturate and aromatic fractions in HDS-AR are mainly converted to the gasoline in the FCC process, providing similar gasoline yields from HDS-VGO and HDS-AR. Thiophene, methylthiophenes, and benzothiophenes were major sulfur species in both gasolines from HDS-AR and HDS-VGO. Such sulfur species are concluded to be derived from benzothiophenes in VGO and dibenzothiophenes in VR fractions, respectively through hydrogen transferring ring opening and dealkylation during FCC. Sulfur compounds are also produced from H2S and olefins in FCC, increasing the sulfur content in the product gasoline. The larger sulfur content in the gasoline from HDS-AR than that from HDS-VGO is ascribed to more H2S being produced during the FCC process as well as dibenzothiophenes being present in the feed.  相似文献   

14.
催化裂化汽油降硫剂的制备与应用   总被引:1,自引:0,他引:1  
杨振声  刘公召 《辽宁化工》2011,40(3):217-220
为降低汽油硫含量,以锌和镧为有效元素合成了催化裂化汽油脱硫钝化剂,在催化裂化装置上进行了工业应用试验。结果表明,当加入量为300×10^-6时,汽油中总硫可以从204×10^-6降低到140×10^-6,脱硫率达36.37%;当加入量为(500~600)×10^-6时,脱硫率可达到50%以上。汽油中的噻吩硫主要以硫化氢形态转移至干气、液化气中。脱硫钝化剂对平衡催化剂的主要性质和FCC产品分布没有明显影响,亦有良好的金属钝化效果。  相似文献   

15.
硅橡胶复合膜渗透汽化分离硫/汽油混合物   总被引:2,自引:0,他引:2  
Worldwide environment has resulted in a limit on the sulfur content of gasoline. It is urgent to investigate the desulfurization of gasoline. The polydimethylsiloxane (PDMS)/polyetherimide (PEI) composite membranes were prepared by casting a PDMS solution onto porous PEI substrates and characterized by scanning electron microscope (SEM). The membranes were used for sulfur removal from gasoline by pervaporation. The effects of feed temperature, sulfur content in the feed and PDMS layer thickness on membrane performance were investigated, and an activation energy of permeation was obtained. Experimental results indicated that higher feed temperature yielded higher total flux and lower sulfur enrichment factor. The total flux varied little with the increase of sulfur content in the feed, but the sulfur enrichment factor first increased with the amount of thiophene added into the gasoline, and then the variation was little. The increase of PDMS layer thickness resulted in a smaller flux but a larger sulfur enrichment factor. The result indicates that the PDMS/PEI composite membranes are promising for desulfurization by pervaporation.  相似文献   

16.
为了满足在辛烷值损失较小的情况下生产"无硫汽油",抚顺石油化工研究院开发出了OCT-ME催化汽油选择性加氢脱硫技术。2012年,首套OCT-ME装置在中国石化湛江东兴石油化工有限公司成功工业应用,标定结果表明OCT-ME技术将FCC汽油硫质量分数由平均466μg/g降低到9.7μg/g,RON损失1.8个单位,表明OCT-ME技术能够满足我国炼厂生产"无硫汽油"的需要。  相似文献   

17.
FCC重汽油深度加氢生产催化重整进料技术   总被引:1,自引:0,他引:1  
李扬  牛士坤  徐大海 《当代化工》2007,36(3):231-232,236
介绍了抚顺石油化工研究院开发的FCC重汽油深度加氢生产催化重整进料技术及其性能特点.主要针对催化汽油重馏分进行加氢精制,脱除其中的硫、氮等杂质,饱和其中的烯烃,可作为催化重整装置的原料.其优点在于不仅可以解决汽油产品硫含量高的问题,又可以增加重整油的产量.  相似文献   

18.
Chunshan Song   《Catalysis Today》2003,86(1-4):211-263
This review discusses the problems of sulfur reduction in highway and non-road fuels and presents an overview of new approaches and emerging technologies for ultra-deep desulfurization of refinery streams for ultra-clean (ultra-low-sulfur) gasoline, diesel fuels and jet fuels. The issues of gasoline and diesel deep desulfurization are becoming more serious because the crude oils refined in the US are getting higher in sulfur contents and heavier in density, while the regulated sulfur limits are becoming lower and lower. Current gasoline desulfurization problem is dominated by the issues of sulfur removal from FCC naphtha, which contributes about 35% of gasoline pool but over 90% of sulfur in gasoline. Deep reduction of gasoline sulfur (from 330 to 30 ppm) must be made without decreasing octane number or losing gasoline yield. The problem is complicated by the high olefins contents of FCC naphtha which contributes to octane number enhancement but can be saturated under HDS conditions. Deep reduction of diesel sulfur (from 500 to <15 ppm sulfur) is dictated largely by 4,6-dimethyldibenzothiophene, which represents the least reactive sulfur compounds that have substitutions on both 4- and 6-positions. The deep HDS problem of diesel streams is exacerbated by the inhibiting effects of co-existing polyaromatics and nitrogen compounds in the feed as well as H2S in the product. The approaches to deep desulfurization include catalysts and process developments for hydrodesulfurization (HDS), and adsorbents or reagents and methods for non-HDS-type processing schemes. The needs for dearomatization of diesel and jet fuels are also discussed along with some approaches. Overall, new and more effective approaches and continuing catalysis and processing research are needed for producing affordable ultra-clean (ultra-low-sulfur and low-aromatics) transportation fuels and non-road fuels, because meeting the new government sulfur regulations in 2006–2010 (15 ppm sulfur in highway diesel fuels by 2006 and non-road diesel fuels by 2010; 30 ppm sulfur in gasoline by 2006) is only a milestone. Desulfurization research should also take into consideration of the fuel-cell fuel processing needs, which will have a more stringent requirement on desulfurization (e.g., <1 ppm sulfur) than IC engines. The society at large is stepping on the road to zero sulfur fuel, so researchers should begin with the end in mind and try to develop long-term solutions.  相似文献   

19.
催化裂化汽油质量升级方案选择   总被引:1,自引:0,他引:1  
针对国内某炼厂催化裂化汽油质量升级需要,对比了降低催化汽油烯烃含量和硫含量的工艺技术,最终选用了CDTECH公司的催化蒸馏技术,该技术包含CDHydro、CDEthers、CDHDS和ISOMPLUS工艺,通过轻汽油醚化,部分中汽油重整,重汽油选择性加氢脱硫,降低了催化汽油烯烃和硫含量,提高了辛烷值,满足了全厂生产国IV标准汽油要求。  相似文献   

20.
有机预硫化剂的合成   总被引:2,自引:0,他引:2  
以单质硫和FCC馏分油为原料合成有机硫化剂。选定了较好的催化剂,并考察了催化剂用量、原料配比、反应温度和反应时间对产物硫含量的影响。优化工艺条件为:n(硫)/n(双键)为2.0;反应时间为2.5 h;反应温度为170℃;催化剂用量为馏分油质量的0.05;在此条件下,可获得硫含量高、分解温度范围宽、黏度低的有机硫化剂。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号