首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This article presents a new method for learning and tuning a fuzzy logic controller automatically. A reinforcement learning and a genetic algorithm are used in conjunction with a multilayer neural network model of a fuzzy logic controller, which can automatically generate the fuzzy control rules and refine the membership functions at the same time to optimize the final system's performance. In particular, the self-learning and tuning fuzzy logic controller based on genetic algorithms and reinforcement learning architecture, which is called a Stretched Genetic Reinforcement Fuzzy Logic Controller (SGRFLC), proposed here, can also learn fuzzy logic control rules even when only weak information, such as a binary target of “success” or “failure” signal, is available. We extend the AHC algorithm of Barto, Sutton, and Anderson to include the prior control knowledge of human operators. It is shown that the system can solve a fairly difficult control learning problem more concretely, the task is a cart–pole balancing system, in which a pole is hinged to a movable cart to which a continuously variable control force is applied. © 1997 John Wiley & Sons, Inc.  相似文献   

2.
对于双闭环直流可逆调速系统,提出了一种将模糊控制与常规PI控制相结合应用在转速环调节器设计的方法。根据工程经验与专家知识所确定的模糊控制规则,进行模糊推理,实现转速环调节器参数的动态整定。应用Matlab软件构建了双闭环直流可逆调速系统的仿真模型,并对转速环分别采用模糊PI控制器和常规PI控制器的直流可逆调速系统分别进行仿真实验并对比结果。从仿真结果可以得出采用模糊控制可以对直流可逆调速系统的动态与静态特性、抗扰性能、恢复性能以及跟踪性能有比较明显的改善与提高。  相似文献   

3.
In this study, an on-line tuning method is proposed for fuzzy PID controllers via rule weighing. The rule weighing mechanism is a fuzzy rule base with two inputs namely; “error” and “normalized acceleration”. Here, the normalized acceleration provides relative information on the fastness or slowness of the system response. In deriving the fuzzy rules of the weighing mechanism, the transient phase of the unit step response of the closed loop system is to be analyzed. For this purpose, this response is assumed to be divided into certain regions, depending on the number of membership functions defined for the error input of the fuzzy logic controller. Then, the relative importance or influence of the fired fuzzy rules is determined for each region of the transient phase of the unit step response of the closed loop system. The output of the fuzzy rule weighing mechanism is charged as the tuning variable of the rule weights; and, in this manner, an on-line self-tuning rule weight assignment is accomplished. The effectiveness of the proposed on-line weight adjustment method is demonstrated on linear and non-linear systems by simulations. Moreover, a real time application of this new method is accomplished on a pH neutralization process.  相似文献   

4.
Learning and tuning fuzzy logic controllers through reinforcements   总被引:18,自引:0,他引:18  
A method for learning and tuning a fuzzy logic controller based on reinforcements from a dynamic system is presented. It is shown that: the generalized approximate-reasoning-based intelligent control (GARIC) architecture learns and tunes a fuzzy logic controller even when only weak reinforcement, such as a binary failure signal, is available; introduces a new conjunction operator in computing the rule strengths of fuzzy control rules; introduces a new localized mean of maximum (LMOM) method in combining the conclusions of several firing control rules; and learns to produce real-valued control actions. Learning is achieved by integrating fuzzy inference into a feedforward network, which can then adaptively improve performance by using gradient descent methods. The GARIC architecture is applied to a cart-pole balancing system and demonstrates significant improvements in terms of the speed of learning and robustness to changes in the dynamic system's parameters over previous schemes for cart-pole balancing.  相似文献   

5.
规则自适应模糊控制器*   总被引:4,自引:0,他引:4  
本文研究了模糊控制器的控制规则自适应问题,提出了一种新的模糊控制规则自生成与自校正方法及相应的算法。仿真研究结果表明本文提出的控制规则自适应算法是有效的。  相似文献   

6.
基于遗传算法的模糊PID控制在水轮发电机组中应用研究   总被引:1,自引:3,他引:1  
水轮发电机组系统是一复杂的系统,常规PID控制很难满足高性能控制要求,本文设计了一自适应模糊PID控制器,模糊推理系统可在线整定PID参数,模糊控制系统的隶属函数和推理规则采用遗传算法优化。仿真实验表明这是一种有效的控制策略,尤其在启停机过程及负载扰动过程较传统PID控制具有更好的鲁棒性和稳定性。  相似文献   

7.
Analysis of direct action fuzzy PID controller structures   总被引:17,自引:0,他引:17  
The majority of the research work on fuzzy PID controllers focuses on the conventional two-input PI or PD type controller proposed by Mamdani (1974). However, fuzzy PID controller design is still a complex task due to the involvement of a large number of parameters in defining the fuzzy rule base. This paper investigates different fuzzy PID controller structures, including the Mamdani-type controller. By expressing the fuzzy rules in different forms, each PLD structure is distinctly identified. For purpose of analysis, a linear-like fuzzy controller is defined. A simple analytical procedure is developed to deduce the closed form solution for a three-input fuzzy inference. This solution is used to identify the fuzzy PID action of each structure type in the dissociated form. The solution for single-input-single-output nonlinear fuzzy inferences illustrates the effect of nonlinearity tuning. The design of a fuzzy PID controller is then treated as a two-level tuning problem. The first level tunes the nonlinear PID gains and the second level tunes the linear gains, including scale factors of fuzzy variables. By assigning a minimum number of rules to each type, the linear and nonlinear gains are deduced and explicitly presented. The tuning characteristics of different fuzzy PID structures are evaluated with respect to their functional behaviors. The rule decoupled and one-input rule structures proposed in this paper provide greater flexibility and better functional properties than the conventional fuzzy PHD structures.  相似文献   

8.
针对地震中建筑物结构主动控制的问题,引入模糊控制规则。该方法采用分层结构,其中包括一个高层的控制器和多个为了降低层间位移的底层子控制器。模糊控制规则能够恰当地调节预先控制在每一时刻所估计的结构状态。改进的地震控制性能通过模糊调节过程将一个简单设计的静态增益转换为实时动态增益。本文在控制器的设计部分充分考虑作动器饱和的状态,并以三层剪切型建筑物结构模型来举例说明。最后模糊规则的运用和Matlab仿真证明这种控制策略的正确性和有效性。  相似文献   

9.
This paper proposes a model-free method using reinforcement learning scheme to tune a supervisory controller for a low-energy building system online. The training time and computational demands are reduced by basing the supervisor on sets of fuzzy rules generated by off-line optimisation and by learning the optimal values of only one parameter, which selects the most appropriate set of rules. By carefully choosing the tuning targets, discretizing the state space, parameterizing the fuzzy rule base, using fuzzy trace-back, the proposed method can complete the training process in one season.  相似文献   

10.
A concept called the decomposition of multivariable control rules is presented. Fuzzy control is the application of the compositional rule of inference and it is shown how the inference of the rule base with complex rules can be reduced to the inference of a number of rule bases with simple rules. A fuzzy logic based controller is applied to a simple magnetic suspension system. The controller has proportional, integral and derivative separate parts which are tuned independently. This means that all parts have their own rule bases. By testing it was found that the fuzzy PID controller gives better performance over a typical operational range then a traditional linear PID controller. The magnetic suspension system and the contact-less optical position measurement system have been developed and applied for the comparative analysis of the real-time conventional PID control and the fuzzy control.  相似文献   

11.
A rule base reduction and tuning algorithm is proposed as a design tool for the knowledge-based fuzzy control of a vacuum cleaner. Given a set of expert-based control rules in a fuzzy rule base structure, proposed algorithm computes the inconsistencies and redundancies in the overall rule set based on a newly proposed measure of equality of the individual fuzzy sets. An inconsistency and redundancy measure is proposed and computed for each rule in the rule base. Then the rules with high inconsistency and redundancy levels are removed from the fuzzy rule base without affecting the overall performance of the controller. The algorithm is successfully tested experimentally for the control of a commercial household vacuum cleaner. Experimental results demonstrate the effective use of the proposed algorithm.  相似文献   

12.
In this paper, the adaptive controller inspired by the neuro-fuzzy controller is proposed. Its structure, called fuzzy rules emulated network (FREN), is derived based on the fuzzy if–then rules. This structure not only emulates the fuzzy control rules but also allows the initial value of controller's parameters to be intuitively chosen. These parameters are further adjusted during system operation using a method similar to the steepest descent technique. The learning rate selection criteria based on Lyapunov's stability condition is also presented. FREN controller is applied to control various nonlinear systems, for examples, the single invert pendulum plant, the water bath temperature control, the high voltage direct current transmission system and the robotic system. Computer simulations results indicate that the proposed controller is able to control the target systems satisfactory.  相似文献   

13.
This paper presents a robust adaptive control strategy for robot manipulators, based on the coupling of the fuzzy logic control with the so‐called sliding mode control (SMC) approach. The motivation for using SMC in robotics mainly relies on its appreciable features. However, the drawbacks of the conventional SMC, such as chattering effect and required a priori knowledge of the bounds of uncertainties can be destructive. In this paper, these problems are suitably circumvented by adopting a reduced rule base single input fuzzy self tuning decoupled fuzzy proportional integral sliding mode control approach. In this new approach a decoupled fuzzy proportional integral control is used and a reduced rule base single input fuzzy self‐tuning controller as a supervisory fuzzy system is added to adaptively tune the output control gain of the decoupled fuzzy proportional integral control. Moreover, it is proved that the fuzzy control surface of the single‐input fuzzy rule base is very close to the input/output relation of a straight line. Therefore, a varying output gain decoupled fuzzy proportional integral sliding mode control approach using an approximate line equation is then proposed. The stability of the system is guaranteed in the sense of the Lyapunov theorem. Simulations using the dynamic model of a 3DOF planar manipulator with uncertainties show the effectiveness of the approach in high speed trajectory tracking problems. The simulation results that are compared with the results of conventional SMC indicate that the control performance of the robot system is satisfactory and the proposed approach can achieve favorable tracking performance, and it is robust with regard to uncertainties and disturbances. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

14.
H环路成形方法设计的控制器阶次较高,不便于工程实现和参数调整;用传统方法确定模糊控制器隶属度函数的参数和模糊规则比较费时且难以保证鲁棒性能和时频域性能指标.针对上述情况,提出了一种综合运用H环路成形和自适应神经模糊推理系统来设计模糊控制器的方法.首先采用H环路成形设计方法,得到鲁棒裕量、动态和稳态性能都符合要求的控制器,然后用自适应神经模糊推理系统来逼近此控制器,最后根据自适应神经模糊推理系统参数确定相应的模糊控制器规则和参数.该方法确定模糊控制器隶属度函数的参数精确而省时,且能保证控制器具有较强的鲁棒性和良好的控制效果.通过对小车倒立摆系统进行的仿真,验证了该控制器设计方法的有效性.  相似文献   

15.
一种改进的三级倒立摆变论域模糊控制器设计   总被引:3,自引:1,他引:2  
在传统变论域模糊控制系统中, 论域随着输入的变化实时改变, 论域的反复调整降低了控制的实时性, 同时伸缩因子的函数结构和参数也不易确定. 基于上述问题本文设计了基于改进型变论域算法的三级倒立摆模糊控制器: 首先提出了相对变论域控制思想, 然后采用模糊逻辑推理器构造了伸缩因子, 实时调整输入变量, 从而相对性地改变论域大小, 避免了传统伸缩因子的函数结构和参数不易确定的问题, 并根据系统闭环响应曲线设计了控制 器输出调整因子. 最后采用极点配置方法对状态变量进行综合, 避免了规则爆炸问题. 三级倒立摆的仿真结果表明了该方法具有较好的控制效果.  相似文献   

16.
A self-organizing fuzzy controller (SOFC) is proposed to control an active suspension system and evaluate its control performance. In complicated nonlinear system control, the SOFC continually updates the learning strategy in the form of fuzzy rules during the control process. The learning rate and the weighting distribution value of the controller are hard to regulate, so its fuzzy control rules may be excessively modified such that the system response generally causes an oscillatory phenomenon. Two fuzzy-logic controllers were designed according to the system output error and the error change, and introduced to the SOFC to determine the appropriate parameters of the learning rate and the weighting distribution, to eliminate this oscillation. This new modifying self-organizing fuzzy-control approach can effectively improve the control performance of the system, reduce the time consumed to establish a suitable fuzzy rule table, and support practically convenient fuzzy-controller applications in an active suspension control system, as verified experimentally.  相似文献   

17.
模糊PID控制在纳米微动台系统中的应用   总被引:1,自引:0,他引:1  
刘经宇  尹文生  朱煜 《控制工程》2011,18(2):254-257
针对在纳米级运动控制中,传统PID算法的参数配置在抑制系统运动超调、提高系统定位精度,以及保障系统稳定性等方面存在矛盾的问题,提出了将模糊自适应PID控制器应用于该系统的方案.并基于大量工程整定实验,给出了针对纳米量级控制特点的模糊集设置和模糊整定规则,选取了合理的PID参数论域取值.实验结果表明,所设计的模糊控制器通...  相似文献   

18.
龙茂森  王士同 《软件学报》2024,35(6):2903-2922
基于宽度学习的动态模糊推理系统(broad-learning-based dynamic fuzzy inference system , BL-DFIS)能自动构建出精简的模糊规则并获得良好的分类性能. 然而, 当遇到大型复杂的数据集时, BL-DFIS因会使用较多模糊规则来试图达到令人满意的识别精度, 从而对其可解释性造成了不利影响. 对此, 提出一种兼顾分类性能和可解释性的模糊神经网络, 将其称为特征扩展的随机向量函数链神经网络(FA-RVFLNN). 在该网络中, 一个以原始数据为输入的RVFLNN被作为主体结构, BL-DFIS则用作性能补充, 这意味着FA-RVFLNN包含具有性能增强作用的直接链接. 由于主体结构的增强节点使用Sigmoid激活函数, 因此, 其推理过程可借助一种模糊逻辑算子(I-OR)来解释. 而且, 具有明确含义的原始输入数据也有助于解释主体结构的推理规则. 在直接链接的支撑下, FA-RVFLNN可利用增强节点、特征节点和模糊节点学到更丰富的有用信息. 实验表明: FA-RVFLNN既减缓了主体结构RVFLNN中过多增强节点带来的“规则爆炸”问题, 也提高了性能补充结构BL-DFIS的可解释性(平均模糊规则数降低了50%左右), 在泛化性能和网络规模上仍具有竞争力.  相似文献   

19.
Fuzzy IMC-PID控制器的设计及仿真研究   总被引:2,自引:0,他引:2       下载免费PDF全文
从IMC结构出发,提出了一种基于fuzzy、PID控制的Fuzzy IMC-PID控制器,对工业过程中时滞系统纯滞后环节一阶Pade近似后,由内模整定得到PID控制器的参数整定值,再依据合适的模糊控制规则,对其进行在线二次自整定。借助MATLAB工具箱进行仿真,结果表明,该控制器具有内模、模糊、PID控制器的优点,超调小、调节性能好、鲁棒性强。对于大纯滞后或非线性系统能够较好地工作,可以推广应用于一般工业过程控制中。  相似文献   

20.

In this study, a novel control strategy that combines a fuzzy system and the sliding mode controller is proposed for improving stability and achieving high-accuracy control in service robots. Based on the kinematic and dynamic models of a 4-degrees of freedom manipulator, and the observed tracking error using a low-cost inertial sensor, the proposed fuzzy sliding mode controller (FSMC(IMU)) is designed to generate appropriate torques at robot joints. The FSMC(IMU) controller parameters are adjusted through a fuzzy rule that determines the state of the system. The error in trajectory tracking is reduced through this. The gain value K can be finely adjusted by fuzzy control by observing the degree of vibration after entering the sliding mode surface. The larger the observed vibration value, the faster the fuzzy controller follows the given input trajectory by selecting a smaller gain value K and reducing jitter due to the sliding mode control’s discontinuous switch characteristics. When the degree of error is small, it achieves faster and more accurate control performance than when the observer is not used. The stability of the FSMC(IMU) system is verified via disturbance experiments. The experimental data are compared with the conventional sliding mode controller and proportional-derivative control. The experimental results demonstrate that the proposed FSMC(IMU) controller is stable, fast, and highly accurate in controlling service robots.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号