首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Porous carbons with high surface area were successfully prepared from thermoplastic precursors, such as poly(vinyl alcohol) (PVA), hydroxyl propyl cellulose and poly(ethylene terephthalate), by the carbonization of a mixture with MgO at 900 °C in an inert atmosphere. After carbonization the MgO was dissolved out using a diluted sulfuric acid and the carbons formed were isolated. The mixing of the PVA carbon precursor with the MgO precursors (reagent grade MgO, magnesium acetate or citrate) was done either in powder form or in an aqueous solution. The BET surface area of the carbons obtained via solution mixing could reach a very high value, such as 2000 m2/g, without any activation process. The pore structure of the resultant carbons was found to depend strongly on the mixing method; the carbons prepared via solution mixing were rich in mesopores, but those produced via powder mixing were rich in micropores. The size of mesopores was found to be almost the same as that of the MgO particles, suggesting a way of controlling the mesopore size in the resultant carbons. Measurement of capacitance was carried out in 1 mol/L H2SO4 electrolyte. The porous carbon with a BET surface area of 1900 m2/g prepared at 900 °C through solution mixing of Mg acetate with PVA showed a fairly high EDLC capacitance, about 250 F/g with a current density of 20 mA/g and 210 F/g with 1000 mA/g. The rate performance was closely related to the mesoporous surface area.  相似文献   

3.
O. Barbieri  A. Herzog 《Carbon》2005,43(6):1303-1310
A large specific surface area (SSA) of carbon materials used for electrochemical double layer capacitors (EDLC) is the most important parameter leading to a large gravimetric capacitance (Cg). However, for a SSA determined with the differential functional theory (DFT) model above a value of 1200 m2/g the plot of Cg versus SDFT exhibits a plateau. We suggest that this limitation of Cg can be ascribed to a space constriction for charge accommodation inside the pore walls. As a consequence, the use of extremely high surface area carbons for EDLCs may be unprofitable.  相似文献   

4.
Kai-Ping Wang  Hsisheng Teng   《Carbon》2006,44(15):3218-3225
Activated carbon fibers are known to contain pores with a small resistance for electrolyte migration while possessing a large electrical resistance between the fibers. A carbon powder derived from pulverization of PAN-based carbon fibers was examined as an electrode for electric double layer capacitors using H2SO4 as the electrolyte solution. The performance of conventional-type activated carbon powders derived from phenol-formaldehyde resin char was also measured for comparison. The fiber-derived carbon exhibited an electrical resistance comparable to that of the conventional carbons while showed a larger specific capacitance as well as a lesser extent of capacitance decrease at high currents due to a smaller pore resistance. An ultimate capacitance as high as 290 F g−1 can be reached for this fiber-derived carbon powder (with a BET surface area of ≈1300 m2 g−1). This large capacitance value was suggested to be associated with the high activity feature of the pore wall.  相似文献   

5.
Ordered mesoporous carbons (OMC) were produced by pyrolysis of hydrocarbons adsorbed in two different silica matrices (MCM-48 and SBA-15), followed by dissolution of the matrix in either hydrofluoric acid or sodium hydroxide. Some carbons were subsequently heat treated at temperatures of up to 1600 °C. The chemistry of the external surface was studied by X-ray photoelectron spectroscopy (XPS) and static secondary ion mass spectroscopy (SIMS). Information on the graphitic order of the surface of the mesopores was obtained from low-pressure nitrogen adsorption data. The external and internal surface of the OMC has a polyaromatic, graphite-like character. This character increases considerably with increasing pyrolysis and/or post-pyrolysis temperature, as expected. According to the XPS and the nitrogen adsorption data, this increase was especially pronounced for temperatures above 1100 °C. In spite of the different pore structures, only small differences in the polyaromatic character were found for OMC synthesised either in a MCM-48 or in a SBA-15 matrix. Differences exist for the non-carbon elements. When hydrofluoric acid is used for dissolution of the silica matrix, organic fluorine compounds are formed. Their concentration is higher when a MCM-48 matrix as opposed to a SBA-15 matrix was used. Dissolution of the silica matrix in sodium hydroxide yielded a less contaminated OMC as compared to dissolution in hydrofluoric acid.  相似文献   

6.
7.
8.
9.
Three types of ordered mesoporous carbon materials with different pore characteristics have been synthesized via different routes. Whatever the synthesis route was, triblock copolymer was employed as both a carbon precursor and a structure-directing agent. The relationship between the capacitances of carbon electrodes and their pore characteristics was elucidated in detail. The material C-P exhibits the lowest resistance and highest specific capacitance value of exceeding 170 F/g among these carbon materials, which can be due to not only high surface area but also its appropriate pore size distribution. In addition, the noteworthy is that the maintenance of specific capacitance with increasing current load for each sample is better than that for general activated carbons, where larger mesopores and high mesopore fraction play important roles in the rate capability.  相似文献   

10.
An-Hui Lu  Wen-Cui Li  Wolfgang Kiefer 《Carbon》2004,42(14):2939-2948
Ordered mesoporous carbon with hexagonal arrays of tubes (CMK-5) was successfully synthesized via a nanocasting process by directly using SBA-15, instead of AlSBA-15, as a template, furfuryl alcohol as a carbon source and oxalic acid as the catalyst. The time consuming impregnation of SBA-15 with aluminum could be saved. The as-synthesized CMK-5 exhibits a tubular structure with double pore system. The loading amount of carbon precursor on the pore walls of SBA-15 is the key factor for the formation of the CMK-5 structure with two-dimensional hexagonal arrays of tubes, and the pore diameter can be adjusted by varying the loading amount of the carbon precursor. The CMK-5 carbon exhibits high apparent surface area up to ∼2500 m2/g and high pore volume reaching ∼2 cm3/g, which is due to the unique structure of CMK-5. The characterization results confirmed that carbonization under argon atmosphere instead of vacuum is sufficient for the structural formation of CMK-5 carbons, and can be used as an alternative pathway to prepare tubular-type carbons.  相似文献   

11.
Hsin-Yu Liu 《Carbon》2005,43(3):559-566
Mesoporous carbon was prepared from resol-type phenol-formaldehyde resin using mesoporous silica as template. By filling the resin into the pores of the template, followed by resin carbonization and template dissolution, mesoporous carbon preparation can be significantly simplified. Small-angle X-ray diffraction reflected the long-range ordering of the pores in the carbon. TEM and N2-adsorption analysis showed that the carbon contained mesopores of different sizes and a high proportion of micropores. Electrochemical cyclic voltammetry was conducted in H2SO4 to examine the surface accessibility of the carbon for double layer formation. Microporous activated carbon, also from the resol resin, was prepared for comparison. Although the pore sizes are different, the double-layer capacitances per unit area for both carbons are similar at low potential sweep rates. However, the capacitance decline with the sweep rate was less significant for the mesoporous carbon. Upon gasification of the carbons to increase their surface area, the ultimate capacitance per unit carbon area was enhanced and the enhancement was slightly larger for the mesoporous carbon. It is suggested that the presence of mesopores has facilitated the electrolyte migration into carbon interior. A two-electrode capacitor assembled with the mesoporous carbon was shown to have a small resistance and still exhibited a capacitive behavior at high potential sweep rates.  相似文献   

12.
V. Ruiz 《Electrochimica acta》2010,55(25):7495-7500
Polyfurfuryl alcohol (PFA) derived activated carbons were prepared by the acid catalysed polymerization of furfuryl alcohol, followed by potassium hydroxide activation. Activated carbons with apparent BET surface areas ranging from 1070 to 2600 m2 g−1, and corresponding average micropore sizes between 0.6 and 1.6 nm were obtained. The porosity of these carbons can be carefully controlled during activation and their performance as electrode materials in electric double layer capacitors (EDLCs) in a non-aqueous electrolyte (1 M Et4NBF4/ACN) is investigated.Carbon materials with a low average pore size (<∼0.6 nm) exhibited electrolyte accessibility issues and an associated decrease in capacitance at high charging rates. PFA carbons with larger average pore sizes exhibited greatly improved performance, with specific electrode capacitances of 150 F g−1 at an operating voltage window of 0-2.5 V; which corresponds to 32 Wh kg−1 and 38 kW kg−1 on an active material basis. These carbons also displayed an outstanding performance at high current densities delivering up to 100 F g−1 at current densities as high as 250 A g−1. The exceptionally high capacitance and power of this electrode material is attributed to its good electronic conductivity and a highly effective combination of micro- and fine mesoporosity.  相似文献   

13.
In this paper the fabrication and characterization of graphitizable and graphitized porous carbons with a well-developed mesoporosity is described. The synthetic route used to prepare the graphitizable carbons was: (a) the infiltration of the porosity of mesoporous silica with a solution containing the carbon precursor (i.e. poly-vinyl chloride, PVC), (b) the carbonisation of the silica–PVC composite and (c) the removal of the silica skeletal. Carbons obtained in this way have a certain graphitic order and a good electrical conductivity (0.3 S cm−1), which is two orders larger than that of a non-graphitizable carbon. In addition, these materials have a high BET surface area (>900 m2 g−1), a large pore volume (>1 cm3 g−1) and a bimodal porosity made up of mesopores. The pore structure of these carbons can be tailored as a function of the type of silica selected as template. Thus, whereas a graphitizable carbon with a well-ordered porosity is obtained from SBA-15 silica, a carbon with a wormhole pore structure results when MSU-1 silica is used as template. The heat treatment of a graphitizable carbon at a high temperature (2300 °C) allows it to be converted into a graphitized porous carbon with a relatively high BET surface area (260 m2 g−1) and a porosity made up of mesopores in the 2–15 nm range.  相似文献   

14.
15.
16.
Marta Sevilla 《Carbon》2006,44(3):468-474
Graphitic porous carbons with a wide variety of textural properties were obtained by using a silica xerogel as template and a phenolic resin as carbon precursor. The synthetic procedure used to prepare them was as follows: (a) infiltration of the porosity of silica by a solution containing phenolic resin, (b) carbonization of the silica-resin composite, (c) removal of the silica skeleton, (d) impregnation of the templated porous carbon with a metallic salt and (e) catalytic graphitization of the impregnated carbon by heat treatment at 900 °C. The graphitization of the carbons thus prepared varies as a function of the carbonization temperature used and the type of metal employed as catalyst (Fe, Ni or Mn). The porous characteristics of these materials change greatly with the temperatures used during the carbonization step. These graphitized carbons exhibit high electrical conductivities up to two orders larger than those obtained for the non-graphitized samples.  相似文献   

17.
18.
Zhuo Guo 《Carbon》2005,43(11):2344-2351
Ordered mesoporous carbons CMK-3 and CMK-1 were prepared from SBA-15 and MCM-48 materials with pore diameters 3.9 nm and 2.7 nm, respectively. When both mesoporous carbons were coated with about 10 wt.% poly(methyl methacrylate) (PMMA), the pore diameters decreased from 3.9 nm to 3.4 nm for CMK-3 and from 2.7 nm to 2.5 nm for CMK-1. These mesoporous carbons containing about 10 wt.% PMMA were studied as adsorbents of Vitamin B 12 (VB12) from water solutions, and their performances were compared with that of pristine CMK-3, CMK-1. Compared with CMK-1, CMK-3 showed higher vitamin B12 adsorption due to a larger mesopore volume, a higher BET surface and a larger pore diameter. After coated with PMMA, both mesoporous carbons showed higher adsorption capacity than pristine materials. The adsorption properties were influenced by the pore structure and surface properties of mesoporous carbons.  相似文献   

19.
W. Xing  P. Bai  R.J. Yu  G.Q. Lu 《Electrochimica acta》2006,51(22):4626-4633
Ordered nanoporous carbon (ONC) was comprehensively tested for the first time as electrode material in lithium-ion battery. Structure characterization shows the order nanoporous structure and tiny crystallite structure of as-synthesized ONC. The electrochemical properties of this carbon were studied by galvanostatic cycling and cyclic voltammetry. Of special interest is that ONC gave no peak on its positive sweep of the cyclic voltammetry, which was different from other known anode materials. Besides, X-ray photoelectron spectroscopy (XPS) and XRD were also used to investigate the electrochemical characteristics of ONC.  相似文献   

20.
Sangjin Han 《Carbon》2003,41(5):1049-1056
We have synthesized two kinds of mesoporous carbons using a spherical silica sol (SMC1 carbon) and an elongated silica sol (SMC3 carbon) as templates. Nitrogen isotherms and electrochemical experiments were performed to investigate the effect of the silica template structure on the pore structure of the resulting mesoporous carbons. When carbons produced using the same silica to resorcinol molar ratio were compared, both nitrogen isotherms and electrochemical studies revealed that the SMC3 carbons exhibit simpler pore connectivity than SMC1 carbons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号