首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report a facile way for continuously tuning the lasing wavelength of an organic thin-film distributed feedback (DFB) laser after device fabrication by varying the effective refractive index seen by the one-dimension DFB laser structure. Varying the effective refractive indices of the organic gain medium and thus the effective refractive index of a one-dimension DFB laser structure after device fabrication is made possible with reorientation of molecules in a molecular glass at elevated temperatures. Distributions of molecular orientations can be fine controlled by annealing temperatures and times, permitting continuous tuning of optical properties and lasing wavelengths. Molecular reorientation can be conducted after devices are made, thus giving one the freedom to set or tune the lasing wavelength to meet a particular purpose with a common structure.  相似文献   

2.
环行腔掺铒光纤激光器调谐实验研究   总被引:1,自引:0,他引:1  
本文自行设计环行腔可调谐光纤激光器,研究环行腔掺饵光纤激光器的调谐技术,采用应力可调谐光栅进行实验,解决了光纤激光器普遍存在的泵浦光反射形成的回波影响问题和窄线宽激光输出功率与激光模式的矛盾,讨论了输出耦合比对调谐特性的影响,实现了窄带滤波和宽带调谐的双重特性,实现了窄线宽可调谐激光输出。  相似文献   

3.
A PLL technique is introduced that enables fast and accurate frequency switching, independent of the loop bandwidth. It uses separate tuning paths, each driving a separate VCO tune port. Different frequencies are produced by letting the VCO make different weighted combinations of the stable tuning voltages. The PLL converges to the stable tuning voltages by switching it a few times between the desired frequencies and tuning paths. Once the stabilized tuning voltages are found, one can switch between frequencies as fast as one can switch between K/sub VCO/s. The technique is applied to a 3.5-GHz integer-N PLL to enable fast jumping of the local oscillator (LO) frequency when an 802.11 transceiver is switched between a low and a zero intermediate frequency (LIF/ZIF). It uses dual phase/frequency detectors (PFD), charge pumps (CPs), and on-chip loop filters to control two separate low-leakage VCO tune ports. Each PFD/tune port combination can be (de)activated separately, without disturbing the loop filters' charge. The 50-kHz bandwidth PLL achieves a measured 7-MHz jump with /spl plusmn/20 kHz accuracy within 6 /spl mu/s. The measured phase noise is -123 dBc/Hz at 1-MHz offset.  相似文献   

4.
《Organic Electronics》2014,15(3):743-750
Recently, it was discovered that the current through an organic semiconductor, sandwiched between two non-magnetic electrodes, can be changed significantly (up to 25%) by applying a small (a few millitesla) magnetic field. At present, the microscopic mechanisms underlying this so-called organic magnetoresistance (OMAR) are intensively being debated. One of the mechanisms which can successfully describe the magnetic field effects on the current in pristine organic semiconductor devices uses the reactions of triplet excitons and polarons. Here, we present a proof of concept study in which we tune these interactions in the device by deliberately doping our devices with fullerene, creating additional charge transfer states (CTS). By engineering devices with different energetic alignments of the CTS and triplet exciton, we can influence the triplet exciton density in the device. We correlate pronounced changes in the magnetic field effect magnitude and lineshape to the energy of the CTS with respect to the triplet exciton.  相似文献   

5.
Semiconductor quantum dots are leading candidates for the on-demand generation of single photons and entangled photon pairs.High photon quality and indistinguishability of photons from different sources are critical for quantum information applications.The inability to grow perfectly identical quantum dots with ideal optical properties necessitates the application of post-growth tuning techniques via e.g.temperature,electric,magnetic or strain fields.In this review,we summarize the state-of-the-art and highlight the advantages of strain tunable non-classical photon sources based on epitaxial quantum dots.Using piezoelectric crystals like PMN-PT,the wavelength of single photons and entangled photon pairs emitted by InGaAs/GaAs quantum dots can be tuned reversibly.Combining with quantum light-emitting diodes simultaneously allows for electrical triggering and the tuning of wavelength or exciton fine structure.Emission from light hole exciton can be tuned,and quantum dot containing nanostructure such as nanowires have been piezo-integrated.To ensure the indistinguishability of photons from distant emitters,the wavelength drift caused by piezo creep can be compensated by frequency feedback,which is verified by two-photon interference with photons from two stabilized sources.Therefore,strain tuning proves to be a flexible and reliable tool for the development of scalable quantum dots-based non-classical photon sources.  相似文献   

6.
An experimental approach to determine the spatial extent and location of the exciton recombination zone in an organic light‐emitting device (OLED) is demonstrated. This technique is applicable to a wide variety of OLED structures and is used to examine OLEDs which have a double‐ (D‐EML), mixed‐ (M‐EML), or graded‐emissive layer (G‐EML) architecture. The location of exciton recombination in an OLED is an important design parameter, as the local optical field sensed by the exciton greatly determines the efficiency and angular distribution of far‐field light extraction. The spatial extent of exciton recombination is an important parameter that can strongly impact exciton quenching and OLED efficiency, particularly under high excitation. A direct measurement of the exciton density profile is achieved through the inclusion of a thin, exciton sensitizing strip in the OLED emissive layer which locally quenches guest excitons and whose position in the emissive layer can be translated across the device to probe exciton formation. In the case of the G‐EML device architecture, an electronic model is developed to predict the location and extent of the exciton density profile by considering the drift, diffusion, and recombination of charge carriers within the device.  相似文献   

7.
The group velocity dispersion of a multilayer thin film Gires-Tournois interferometer used for reflection of ultrashort optical pulses can be continuously tuned from positive to negative values at an extremely low loss in pulse energy. Thus, this device can be applied for compression of femtosecond pulses independent of the sign of the frequency chirp by simple angle tuning of the interferometer. This has been demonstrated with up-chirped 210 fs pulses which have been compressed to an almost transform-limited duration of 115 fs.  相似文献   

8.
Different dispersion near the electronic band edge of a semiconductor can have great influence on its transport, thermoelectric, and optical properties. Using first‐principles calculations, it is demonstrated that a new phase of group‐IV monochalcogenides (γ‐MX, M = Ge, Sn; X = S, Se, or Te) can be stabilized in monolayer limit. γ‐MXs are shown to possess a unique band dispersion—that is, camel's back like structure—in the top valence band. The band nesting effect near the camel's back region induces a large excitonic absorbance and significantly different exciton behaviors from other 2D materials. Importantly, the small effective mass and the indirect characteristics of lowest‐energy exciton render it advantageous for the generation of electron–hole liquid state. After careful evaluation of the electron–hole dissociation temperature and the Mott critical density, it is predicted that a high‐temperature exciton gas to electron–hole liquid phase transition can be achieved in these materials with a low excitation power density. The findings open up new opportunities for both the fundamental research on exciton physics and design of excitonic devices based on 2D materials with distinct band dispersion.  相似文献   

9.
利用射频磁控反应溅射技术生长出具有高度晶面(0002)取向的ZnO外延薄膜。通过AFM、XRD、吸收光谱和荧光光谱等测试手段,分别研究分析了不同衬底、不同溅射气氛和退火对ZnO薄膜结构及光学性质的影响。研究表明,在200℃低温生长的硅基ZnO薄膜具有几百纳米的氧化锌准六角结构外形;当氧氩比为4:1(质量流量比)时,吸收谱激子峰最佳;退火后,激子峰(363 nm)加强,同时出现了402 nm的本征氧空位紫光发射。  相似文献   

10.
Structural and optical properties of InAs quantum dots (QDs) grown in a wide-bandgap Al0.3Ga0.7As matrix is studied. It is shown that a high temperature stability of optical properties can be achieved owing to deep localization of carriers in a matrix whose band gap is wider than that in GaAs. Specific features of QD formation were studied for different amounts of deposited InAs. A steady red shift of the QD emission peak as far as ∼1.18 μm with the effective thickness of InAs in Al0.3Ga0.7As increasing was observed at room temperature. This made it possible to achieve a much higher energy of exciton localization than for QDs in a GaAs matrix. To obtain the maximum localization energy, the QD sheet was overgrown with an InGaAs layer. The possibility of reaching the emission wavelength of ~1.3 μm is demonstrated. __________ Translated from Fizika i Tekhnika Poluprovodnikov, Vol. 37, No. 5, 2003, pp. 578–582. Original Russian Text Copyright ? 2003 by Sizov, Samsonenko, Tsyrlin, Polyakov, Egorov, Tonkikh, Zhukov, Mikhrin, Vasil’ev, Musikhin, Tsatsul’nikov, Ustinov, Ledentsov.  相似文献   

11.
We present a detailed examination of the optical properties and electronic structure taken from photoreflectance and photoluminescence data collected on a series of short-period ZnS-ZnSe superlattices grown by low pressure metalorganic vapor phase epitaxy. We studied the band offset problem and calculated the exciton binding energy using several variational models. The temperature dependence of the photoluminescence properties of these superlattices was analyzed in the context of a model which includes the influence of the interfacial disorder.  相似文献   

12.
We have fabricated an edge-coupled InGaAs p-i-n photodiode (EC-PD) with its pseudowindow defined by conventional photolithographic processes and its facet formed by etching. Through fine tuning the window thickness, the transit-time-limited bandwidth was largely increased and device bandwidth was improved from ~8 GHz toward ~20 GHz. Such a tuning process is in fact a controlled selective chemical etching process, and optimizes the window thickness through reducing the thickness of undepleted absorption region. Although after tuning, the device preserves low leakage, the anisotropic chemical etching results in a sloped and reentrant facet that degrades the optical coupling efficiency and thus the device responsivity, which drops from 0.5 to 0.4 A/W at 1.3-μm wavelength for a device without an anti-reflection coating. For the EC-PD with the optical input facet formed by etching instead of the cleavage process, the device yield can be improved and direct die separation is feasible, which amounts to a huge cost reduction. Furthermore, an edge-coupled photodiode array, which requires several reliable diodes in series, can be realized  相似文献   

13.
14.
Tuning characteristics of widely tunable twin-guide (TTG) laser diodes with sampled gratings (SGs) are reported. Two SGs, providing slightly different reflection spectra, enable wide tunability by means of Vernier effect tuning. The device structure is vertically integrated and, hence, a DFB-like laser is obtained, which makes a phase tuning section unnecessary and facilitates easy and fast device characterisation. Although the tuning section can tune the SG reflection spectra by only /spl sim/2 nm, an overall tuning range of 28 nm has been achieved by employing Vernier effect tuning. Within the aforementioned tuning range, five supermodes are usable and can be tuned continuously without any mode-hops. The lasers operate at /spl sim/1.55 /spl mu/m wavelength and achieve a maximum output power of 12 mW.  相似文献   

15.
Organic single-crystalline semiconductors have drawn significant attention in the area of organic electronic and optoelectronic devices due to their superiorities of highly ordered structure, high carrier mobility and low impurity content. Molecular doping technique has made great progress in improving device performance via optimizing the optical and electrical properties of organic semiconductors. In particular, this technique has been attempted by taking fluorescent dye-molecules as the emissive dopants to tune emission color and improve device performance of organic single crystals. Up to now, there are few reports about the use of molecular doping in organic single crystals to optimize their intrinsic electrical properties. Here, we have introduced the controllable molecular doping as a feasible approach toward manipulating charge carrier transport properties of organic single crystals. Upon optimization of doping concentration, balanced carrier transport can be realized in 5,5′-bis(4-trifluoromethyl phenyl) [2,2’] bithiophene (P2TCF3)-doped 1,4-bis(4-methylstyryl) benzene (BSB–Me) crystals. Organic light-emitting devices (OLEDs) based on these doped crystals achieve a maximum luminance of 423 cd/m2 and current efficiency of 0.48 cd/A. It demonstrates that high-efficiency crystal-based OLEDs are of great significance for the development of organic electronics, especially for display and lighting applications.  相似文献   

16.
《Organic Electronics》2014,15(7):1476-1480
For window integration of semi-transparent solar cells in living and working areas, color neutral transparency perception and good color rendering are of pivotal importance. In order to tune the optical device properties, we simulate a parallel tandem configuration with two different absorber materials. Within a regime of convenient transparency perception, the transparency can be adjusted between 20% and 40% by choosing the right absorber layer thickness combination. From the optical field in the tandem devices we calculate the charge carrier generation profile and subsequently correlate the optical properties with the electrical device properties as derived from drift-diffusion modelling – altogether allowing for a comprehensive assessment of the transparency, the transparency perception and the device performance and their interdependencies.  相似文献   

17.
In this paper, nonlinear optical properties of CdxZn1-xSe/ZnSe (x = 0.2) multiple quantum wells were studied by low temperature steady-state and transient photoluminescence at high excitation densities. The biexciton transition was observed on the low energy side of the exciton transition. Based on the characteristics of stimulated emission observed in similar structures, we suggest the biexciton transition as the mechanism for stimulated emission. Optical degradation was also studied by room temperature photoluminescence using femtosecond laser pulses as the excitation source. The results confirm the formation of nonradiative recombination centers with a saturating degradation effect after about 10 min of exposure.  相似文献   

18.
This paper presents a full four-port characterization for traveling-wave optoelectronic devices, in particular, traveling-wave photodetectors (TWPDs), resulting in a scattering matrix formalism, which can be used for passive as well as active devices. A set of coupled distributed equivalent circuits is proposed for modeling the device, taking into account the wanted detection and spurious emission of light. A scattering matrix formalism is established, predicting the performances of the device at microwaves, when a microwave signal is used either for modulating the intensity of the optical power (forward detection mode) or for biasing the p-i-n junction (reverse emission mode). Hence, the obtained four-port device is nonreciprocal. Some symmetry properties are induced by the physical symmetry of the device. It has matched inputs, when symmetric electrical and optical reference loads are used. The scattering matrix satisfies power conservation laws. The formalism may be used to optimize the designs of TWPD's by varying the loads at each of the four ports  相似文献   

19.
Organic-inorganic hybrid perovskite have recently drawn appreciable attention for applications in light-emitting diodes (LEDs). However, the weak exciton binding energy of the methylammonium lead iodide perovskite introduces large exciton dissociation and low radiative recombination on its application as emission layer in near-infrared LEDs. Herein, we demonstrate the simple method by incorporating of phenethylammonium iodide (PEAI) into the perovskite can concurrently improve the radiative recombination rate for improving perovskite LED performances. Additionally, by introducing PEAI dramatically constrains the growth of perovskite crystals during film forming, producing crystallites with small dimensions, reducing roughness, and pin-hole free. After optimizing the emission layer in the perovskite LED, a high optical output power of 458.03 μW and external quantum efficiency of 5.25% are achieved, which represents a ~50-fold enhancement in the quantum efficiency compared to device without PEAI. Our work suggests a broad application prospect of perovskite materials for high optical output power LEDs and eventually a potential for solution-processed electrically pumped NIR laser diodes.  相似文献   

20.
This paper reports the variation in the optical and geometrical properties of individual organic layers to be used for thermally damaged top-emission organic light-emitting diodes (TEOLEDs). The copper deposited on the back of TEOLEDs is employed as a thermal facilitator, and a certain thermal damage occurs to the organic layers and devices. The phosphorescent host material 4,4′-bis(N-carbazolyl)-1,1′-biphenyl (CBP) is rapidly damaged to a significant extent owing to the low glass transition temperature (Tg), which also changes its optical and geometrical surface properties. Although the optical properties of the hole transport layer, N,N′-di(1-naphthyl)-N,N′-diphenyl-(1,1′-biphenyl)-4,4′-diamine (NPB) were changed slightly, the surface morphology was changed significantly. Despite having a higher Tg, the exciton blocking layer, tris(4-carbazoyl-9-ylphenyl)amine (TCTA), shows notable variations in optical properties and surface morphology due to heat exposure. Surprisingly, the electroluminescence spectra and micro-cavity are affected by increasing temperature without any considerable changes in device performance. Hence, this study reveals that besides Tg, the surface morphologies and thicknesses of the organic layers are also important factors in the annealing process and play a vital role in causing thermal damage to TEOLEDs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号