首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
利用Gleeble-1500D热模拟试验机,采用等温压缩试验,研究了Cu-Fe-P-Zn-Sn-Mg合金在变形温度为750~950℃、应变速率为0.01~10s-1条件下的流变应力的变化规律,测定了其真应力-应变曲线,并分析了合金在热压缩过程中的组织演变规律。结果表明,合金的真应力-应变曲线具有典型的动态再结晶特征,其流变应力随变形温度的降低以及应变速率的提高而增大,且变形温度越高、应变速率越小,合金越容易发生动态回复和再结晶。在试验基础上,计算并建立了合金热变形过程中流变应力与变形温度和应变速率之间关系的热压缩高温变形本构方程。  相似文献   

2.
在Gleeble 1500D热模拟试验机上,采用高温等温压缩试验对Cu-Ni-Si-P-Cr合金在应变速率为0.01~5 s 1、变形温度为600~800℃条件下的流变应力行为进行研究,利用光学显微镜分析合金在热压缩过程中的组织演变及动态再结晶机制。结果表明:Cu-Ni-Si-P-Cr合金在热变形过程中发生了动态再结晶,且根据变形温度的不同,真应力—真应变曲线的特征有所不同。流变应力随变形温度升高而降低,随应变速率提高而增大。从流变应力、应变速率和温度的相关性得出该合金热压缩变形时的热变形激活能Q和本构方程。  相似文献   

3.
采用等温热压缩实验研究DP工艺Inconel 718合金在变形温度为900~1060℃,应变速率为0.001~0.5 s~(-1)条件下的高温流变行为,分析摩擦因数和绝热温升对真应力-真应变曲线的影响,并对摩擦引起的流变应力误差进行了修正,建立了基于应变量的应变本构模型。结果表明:随着应变速率的增大和变形温度的降低,摩擦因数的影响趋于明显,变形激活能和材料常数是应变量的函数。对引入应变量参数建立的用于预测工艺处理的Inconel718合金不同变形量时的流变应力本构模型进行误差分析,其实验值与预测值的相关性系数为0.998,平均相对误差绝对值为3.87%,能够用于准确预测不同变形量时合金的流变应力值。  相似文献   

4.
通过在Gleeble-3500型热模拟实验机上对GH5188合金进行等温热压缩实验,在变形温度为1030~1150℃、应变速率为0.01~10s-1的条件下,研究其热压缩变形的流变应力变化规律。在应力-应变结果的基础上,采用引入应变量因素的Arrhenius方程,建立了描述GH5188合金高温变形特性的本构方程。结果表明:变形温度和应变速率对GH5188合金流变应力影响显著,随变形温度升高和变形速率的降低,相同变形程度下合金的流变应力显著降低,并且在较低的应变下合金即可达到稳态流变状态。GH5188合金流变应力计算值和实验值相对误差较小,所建立的本构方程具有良好的预测能力。  相似文献   

5.
为了研究挤压态ZK60镁合金的热变形行为,利用Gleebe-3500热模拟机在变形温度为523~723 K、应变速率为0.01~10 s~(-1)的条件下对挤压态ZK60合金进行了热压缩变形试验。通过真应力-真应变曲线分析了挤压态ZK60合金流变应力与应变速率、变形温度之间的关系,通过引入Z参数建立了挤压态ZK60合金的流变应力本构方程,并观察了其在热压缩过程中的显微组织变化。结果表明:挤压态ZK60合金的真应力-真应变曲线属于动态再结晶型,并且合金的流变应力在高变形温度或低应变速率条件下较低。在变形温度降低或应变速率升高时,动态再结晶晶粒变小,但动态再结晶进行的不充分,再结晶晶粒分布不均匀。通过本构方程计算出挤压态ZK60镁合金的变形激活能Q=122.884 k J/mol,应力指数n=5.096。  相似文献   

6.
为了模拟高温合金GH4169的热轧复合工艺,采用MSS-200热模拟机对高温合金GH4169进行热压缩复合模拟,变形温度为900~1100 ℃,应变速率为1~10 s-1。通过应力应变曲线建立了描述GH4169高温合金压缩变形行为的Arrhenius型本构方程和热加工图,计算相应的热变形活化能Q和应力指数n分别为320.33 kJ·mol-1和4.1573。此外,采用光学显微镜(OM)和电子背散射衍射(EBSD)技术观察了结合界面。结果表明:结合界面主要受变形工艺参数的影响,在1100 ℃/10 s-1变形条件时,结合界面几乎看不见。  相似文献   

7.
在Gleeble-1500D热/力模拟试验机上进行高温等温单道次压缩试验,探讨Cu-0.8Cr-0.3Zr-0.03P合金在变形温度和应变速率分别为650~950℃和0.001~10 s-1条件下的热变形特性。通过真应力-真应变曲线的采集数据计算出合金高温热压缩时的本构方程和热变形激活能Q,根据动态模型绘制真应变为0.3和0.5的热加工图,并结合显微组织分析合金的变形机理,确定热加工失稳区间。研究表明:功率耗散因子η随变形温度递升呈增大趋势,合金的流变软化机理由动态回复逐渐向动态再结晶转变。得出热压缩过程的的最优加工范围为:温度为730~875℃,应变速率为0.1~1 s-1。  相似文献   

8.
研究了经δ相时效处理(Delta Processing,DP)后的优质GH4169高温合金在不同变形温度(980、1010、1040、1070℃)及应变速率(0.001、0.01、0.1、1s~(-1))进行热模拟压缩实验。结果表明:GH4169镍基高温合金在该变形条件下的平均激活能Q=528.24 kJ/mol,Nb元素含量上调会显著增加合金的变形激活能(约40 kJ/mol),该材料的热变形过程可通过双曲正弦本构模型进行描述。通过表征相应热变形后的显微组织,并结合GH4169高温合金的热加工图,表明GH4169高温合金适宜在低温低应变速率和高温高应变速率下加工。  相似文献   

9.
采用Gleeble-3500热模拟机对GH690-RE合金进行高温压缩变形试验,在温度为950~1200℃,应变速率为0.001~2.000s-1的变形条件下测定并分析其应力-应变曲线。结果表明,流变应力随变形温度的升高和应变速率的降低而降低,且流变应力特征可用经典的双曲正弦模型描述。以应力-应变曲线为基础,采用线性回归法确定了GH690-RE合金的常数,建立了GH690-RE合金的高温本构关系方程。  相似文献   

10.
研究了镍基高温合金GH4700变形温度和应变速率对热变形行为的影响,建立了该合金的热变形本构方程和热加工图。结果表明:在变形温度1120~1210℃、应变速率0.01~20 s-1条件下,该合金的热变形流变曲线呈现出典型的动态再结晶型特征,存在稳态的流变应力,且随着变形温度的升高和应变速率降低,动态再结晶过程更充分;GH4700合金的热变形激活能为326.3165 kJ/mol;该合金在温度为1180~1210℃,应变速率为10~20 s-1的热压缩变形条件下,能量耗散率η值较高,大于0.30,显微组织发生完全动态再结晶,获得的组织晶粒细小且分布均匀。  相似文献   

11.
在热模拟试验机上进行了高温压缩试验,研究了GH4698高温合金在不同变形温度(950~1200℃)和应变速率(0. 01~10 s^-1)条件下的流变行为,建立了基于流变曲线的本构方程及以动态材料模型为基础的热加工图。借助扫描电镜和背散射电子衍射技术(EBSD)对变形后试样进行组织分析。结果表明:GH4698高温合金流变应力随着变形温度的降低和应变速率的加快而逐渐增加。在变形温度为1000~1200℃、应变速率为0. 01~0. 05 s^-1的热变形条件下,GH4698高温合金具有较佳的热加工行为。在高、低功率耗散率区域中,随着功率耗散率值的增加,动态再结晶百分数均会增加,再结晶平均晶粒尺寸增大,大角度晶界分数增加。  相似文献   

12.
在Gleeble-1500热力模拟机上对铸态GH4169合金进行热压缩试验,变形参数为:温度(1193~1373K)、应变速率(0.01~10s~(-1))、变形量50%。通过分析真应力真应变曲线,研究铸态GH4169合金的热变形行为;对比分析了Johnson-Cook(JC)、修正的Johnson-Cook(MJC)和应变补偿Arrhenius3种本构模型的相关系数(R)和平均相对误差(AARE)。结果表明:铸态GH4169合金的流变应力随变形温度的升高和应变速率的降低而减小。JC模型、MJC模型和应变补偿的Arrhenius本构模型的相关系数(R)分别为0.891、0.956和0.961,AARE依次为29.02%、11.16%和9.31%。因此,应变补偿的Arrhenius模型能够更为精确地描述铸态GH4169的热变形行为。  相似文献   

13.
针对GH4169合金涡轮盘热模锻中易出现粗晶、混晶等显微组织缺陷,通过热模拟压缩实验和热变形后热处理实验,研究分析了GH4169合金在热变形和后续热处理中的显微组织演变规律,并建立了晶粒尺寸演变模型。实验结果表明:GH4169合金在热变形中的主要显微组织演变机制为动态再结晶,热变形后热处理中的主要显微组织演变机制为晶粒长大和孪晶生成。将晶粒尺寸演变模型与有限元结合,对某GH4169合金涡轮盘热模锻中的晶粒尺寸演变进行了预测分析,预测结果与实际结果一致。  相似文献   

14.
采用Gleeble-3800热模拟压缩试验机对热等静压态FGH96合金进行了不同温度和应变速率的等温热压缩试验,研究了FGH96合金在变形温度分别为1040、1070、1100、1130 ℃,应变速率为0.001、0.01、0.1和1 s-1,最大真应变为0.7条件下的高温热变形行为,分析了真应力-真应变曲线,建立了本构方程,并利用Origin软件构建了热加工图,结合变形温度和应变速率对组织的影响确定了FGH96合金合适的热加工参数。结果表明,热等静压态FGH96合金的真应力-真应变曲线呈现典型的动态再结晶特征,其峰值应力随变形温度的降低和应变速率的增加而增加,结合本构方程、热加工图以及微观组织确定了FGH96合金合适的热加工区域为变形温度1060~1080 ℃,应变速率0.0001~0.004 s-1。  相似文献   

15.
采用GLEEBLE-1500热模拟机对Mg-10Gd-2Y-O.6Zr合金在温度为350-450℃,变形速率为0.001~0.5s,最大变形程度为50%的条件下,进行了恒应变速率高温压缩模拟试验研究,分析了合金高温变形时流变应力与应变速率及变形温度之间的关系以及组织变化。结果表明:合金的稳态流变应力随应变速率的增大而增大,随温度的升高而降低;在给定的变形条件下,计算出合金的变形激活能和应力指数分别为223kJ/mol和6.9,建立了合金高温变形的本构方程;根据试验分析,合金变形温度为400℃,变形速率为0.5s^-1,或变形温度为450℃,变形速率为0.1s^-1下进行热压缩,可以得到组织结构均匀和热翅性加工良好的匹配.  相似文献   

16.
在Gleeble-3500热模拟实验机上对Delta工艺Inconel 718合金进行高温压缩实验,研究其高温压缩变形的流变应力行为。结果表明:δ相时效态Inconel 718合金在本实验条件下具有正的应变速率敏感性,流变应力随着应变速率的降低和变形温度的升高而减小,动态再结晶是合金重要的软化机制。δ相时效态Inconel 718合金的热变形激活能为497.407 kJ/mol,高温压缩峰值流变应力与变形温度和应变速率的关系可用双曲正弦函数表示。  相似文献   

17.
在Gleebe-1500热模拟机上对0H4049合金进行了热模拟压缩实验,采用动态材料模型建立了合金的热加工图.基于热加工图研究了GH4049合金在温度为1060~1180℃、应变速率为0.1~50s-1条件下的热变形特性.结果表明,GH4049合金的热变形失稳区域集中在温度为1060~1110℃、应变速率为0.7~50s-1及温度为1120~1180℃、应变速率为1.8~50s-1的两个区域内;在合金的热变形稳定区域内,温度为1110~1175℃、应变速率为0.1~1.8s-1是合金典型的动态再结晶区域,对应的峰值效率为32%.  相似文献   

18.
通过对GH3128合金进行热模拟压缩试验,研究了该合金在变形温度950~1150 ℃、应变速率0.01~10 s-1及应变量30%~70%条件下的流变特征。通过绘制合金流变应力曲线,并基于Arrhenius模型建立了GH3128合金的本构方程。在此基础上,获取了变形量30%~65%的材料加工图,并结合GH3128合金完全再结晶条件图,明确了合金在高温变形过程中组织演变同塑性变形参数之间关系。此外,通过对碳化物的金相分析,探明了合金在热变形过程中碳化物的演变规律。结果表明:GH3128合金热加工激活能约为305 kJ/mol,合理的加工区域为:变形温度1050~1100 ℃,应变速率0.1 s-1左右。此时合金内碳化物基本回溶,组织再结晶充分,晶粒尺寸可控制在10 μm以下。  相似文献   

19.
在Gleeble-3500热模拟机上对半固态7050铝合金进行了高温热压缩试验,研究了该合金在变形温度为420~465℃、应变速率为0.001~0.100s-1条件下的流变应力行为以及变形过程中的显微组织。结果表明,流变应力在变形初期随着应变的增大迅速增大,出现峰值应力后逐渐平稳,流变应力随着应变速率的增大而增大,随着变形温度的升高而下降;流变应力可以用双曲线正弦形式的关系来描述,通过线性拟合计算出该材料的形变激活能等参数,获得流变应力的本构方程。随着变形温度升高和应变速率降低,合金中拉长的晶粒变大,合金热压缩变形的主要软化机制为动态再结晶。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号