共查询到19条相似文献,搜索用时 46 毫秒
1.
高强度奥氏体不锈钢的热变形行为及其热加工图 总被引:3,自引:1,他引:3
从工业生产的不锈钢大型锻件上取样,在应变速率0.01~10s-1、变形温度850~1250℃条件下采用Gleeble3500热模拟试验机进行了压缩热变形试验,研究了一种高强度奥氏体不锈钢热变形力学行为和再结晶规律,测得热变形激活能为455kJmol,并列出了这种高强度奥氏体不锈钢的热变形方程ε=4.173·1016[sinh(α·σp)]4.06exp-455000RT。基于动态材料模型建立了其在常见形变量之下的热加工图(ProcessingMap)。试验结果说明,该奥氏体不锈钢具有较高的动态再结晶温度,在1150℃变形能量消耗效率达到最大值0.4。 相似文献
2.
3.
在Gleeble-3800热模拟试验机上对15-5PH钢进行高温热压缩试验,研究该材料在变形温度850~1180℃、应变速率0.001~10 s~(-1)、真应变量约为0.9条件下的热变形行为。采用双曲正弦模型建立了该材料的高温变形本构关系,依据动态材料模型建立并分析了其热加工图。结果表明:在热压缩过程中,峰值应力随变形温度的升高而减小,随应变速率的升高而增大,当变形速率较低时,材料在变形温度范围内均发生了动态再结晶。15-5PH钢的热变形激活能为228.41 k J/mol。从热加工图中获得了该材料最佳热加工参数范围是:变形温度1000~1150℃、应变速率0.001~0.1 s~(-1)。 相似文献
4.
在Gleeble~(-1)500D热模拟试验机上对O态6082铝合金进行了热压缩实验,研究了该合金在变形温度300~500℃,应变速率0.01~10 s~(-1)条件下的热变形行为和组织演化;基于Arrhenius双曲正弦本构关系建立了6082铝合金的本构方程;基于动态材料模型(DDM)和Murty法建立了热加工图,并结合微观组织进行验证。研究结果表明:6082铝合金为正应变速率敏感材料,峰值应力随温度的降低和应变速率的升高而升高,热变形过程中的主要软化机制为动态回复,在较高温较低应变速率(500℃,0.1 s~(-1))时,该合金发生动态再结晶。计算得到该合金的热激活能为171.1539 k J·mol~(-1),最佳热加工工艺参数区间为:450~500℃,0.2~0.5 s~(-1)。 相似文献
5.
采用高温等温压缩试验,对Cu?Ni?Si?P合金在应变速率0.01~5?1、变形温度600~800°C条件下的高温变形行为进行了研究,得出了该合金热压缩变形时的热变形激活能Q和本构方程。根据实验数据与热加工工艺参数构建了该合金的热加工图,利用热加工图对该合金在热变形过程中的热变形工艺参数进行了优化,并利用热加工图分析了该合金的高温组织变化。热变形过程中Cu?Ni?Si?P合金的流变应力随着变形温度的升高而降低,随着应变速率的提高而增大,该合金的动态再结晶温度为700°C。该合金热变形过程中的热变形激活能Q为485.6 kJ/mol。通过分析合金在应变为0.3和0.5时的热加工图得出该合金的安全加工区域的温度为750~800°C,应变速率为0.01~0.1 s?1。通过合金热变形过程中高温显微组织的观察,其组织规律很好地符合热加工图所预测的组织规律。 相似文献
6.
7.
利用Gleeble-3500热力模拟试验机分别对304与304L奥氏体不锈钢进行单道次热压缩实验,研究了材料在变形温度900~1100℃,应变速率0.01~5 s~(-1)条件下的热变形行为及组织演变规律,并基于动态材料模型(Dynamic Materials Mod-el,DMM)对比分析304与304L奥氏体不锈钢的热加工性能。结果表明:304L变形抗力随变形温度的升高和应变速率的降低而降低,其流变曲线可分为加工硬化、动态回复及动态再结晶3种类型。通过构建304与304L奥氏体不锈钢的热加工图,发现当应变量为0.6时,304热加工窗口为970~1050℃、0.01~0.1 s~(-1)和1050~1100℃、0.03~1 s~(-1),并在高温低应变速率区域出现严重的流变失稳现象; 304L热加工窗口为950~1100℃、0.01~0.03 s~(-1)。对比可知304和304 L的可加工温度区间相似,但应变速率区间差异明显,合金元素含量的变化导致可加工应变速率区间向低应变速率方向移动。 相似文献
8.
《重型机械》2020,(5)
采用Gleeble-3800,对铸态309L不锈钢在900~1 100℃、0. 01~10 s-1进行热压缩模拟,得到实验钢的热变形应力应变曲线、建立其相应的本构方程和热加工图。结果表明:309L不锈钢的流动应力,对其变形温度和应变速率更敏感;根据Arrhenius模型构建铸态309L不锈钢峰值应力下,相应的本构方程,计算得到其热变形激活能为353. 27 k J/mol;依据相应的变形曲线,绘制本实验钢的热加工图,得出当温度处于1 050~1 100℃、应变速率在0. 01~0. 05 s-1时和温度在1 030~1 100℃、应变速率在3. 1~10 s-1时,309L不锈钢具有最佳的工艺,有良好的热加工性能。 相似文献
9.
采用真空非自耗熔炼炉制备了低成本Ti-6Al-2.5V-1.5Fe-0.15O合金。利用Gleeble-1500D热模拟机,研究了其热加工参数为:变形温度875~1100℃、应变速率0.001~1 s~(-1),变形量为70%时的热变形行为。建立了Ti-6Al-2.5V-1.5Fe-0.15O合金考虑应变量的Arrhenius本构方程,基于动态材料模型建立热加工图。结果表明:变形温度升高,应变速率降低,流变应力降低。通过本构方程计算可得两相区平均热激活能为398.824 kJ/mol,远大于纯钛自激活能,表明热变形软化机制与动态再结晶有关。单相区热激活能为210.93 kJ/mol,略大于纯钛自激活能,以动态回复为主。通过热加工图确定2个失稳区,中等变形温度(950~1070℃)、高应变速率(0.31~0.1 s~(-1))易发生绝热剪切。结合热加工图确定适合的加工区间:应变速率为0.001~0.01 s~(-1),变形温度为875~925℃。 相似文献
10.
11.
为优化较大变形量节镍型奥氏体不锈钢热轧工艺,在GLEEBLE-3500热力模拟试验机上对1Cr14Mn10Ni1.5不锈钢进行了温度950-1250℃,应变速率0.01-5.0s-1,应变为0.36、0.69和0.92的等温热压缩实验。建立了基于应变影响三维热加工图,使用Arrhenius型本构方程计算出了三种应变下的热激活能,联系微观组织分析了热加工图受应变影响的演变行为。结果表明:当真应变从0.36增加到0.69和0.92时,热激活能Q从501kJ/mol分别下降到427kJ/mol和424.86kJ/mol,说明在0.36-0.69应变区间内,位错引入和生成的速度低于位错运动和湮灭的速度;热加工图显示,峰值区域和谷值区域会随着应变的增加向低温和高速方向移动,这是由于应变输入的总能量增加导致的;该实验钢在热加工图中存在三个峰值区域,0.69真应变,1175-1225℃,1.0-5.0s-1的条件下能够达到最高38%的热加工功率,这与高应变速率下的温升有关;随着应变增加到0.69和0.92,失稳区域的面积先增大后减小;应力应变曲线和微观组织证明,高功率的区域的软化机制为动态再结晶,失稳区域表现为不连续动态再结晶和动态回复。 相似文献
12.
采用Thermecmastor-Z热模拟试验机研究了试验钢在800~1150 ℃、应变速率0.01~10 s-1的热压缩变形行为,并观察变形后显微组织。基于试验数据分析,确定了试验钢在奥氏体区的热变形方程,建立试验钢在0.8真应变下的热加工图。结果表明:试验钢的流变应力和峰值应变随变形温度的升高而减小;试验钢在奥氏体区的热变形激活能为385.91 kJ/mol。根据试验钢功率耗散及流变失稳判据确定最佳热加工工艺参数为热变形温度范围1050~1150 ℃和应变速率0.01~0.1 s-1。在该范围内,试验钢发生完全动态再结晶,功率耗散系数为17%~32%。 相似文献
13.
《塑性工程学报》2015,(4):128-132
采用Gleeble-1500D热模拟试验机对SA508-3CL钢在变形温度800℃~1 200℃、应变速率0.001s-1~1s-1条件下进行热压缩实验,并将获得的真应力真应变数据引入Arrhenius型本构方程,通过多元线性回归计算,得到了SA508-3CL钢的变形激活能为422.455kJ·mol-1,同时建立了该钢的流变应力本构方程。将功率耗散图与失稳图叠加,得到了SA508-3CL钢在应变量为0.3、0.5和0.7时的热加工图,对在应变量为0.7时的热加工图及金相组织分析表明,该钢的组织缺陷主要是局部流变失稳,该钢的安全加工条件为温度1100℃~1200℃,应变速率0.01s-1~0.1s-1。 相似文献
14.
采用Gleeble-3500热模拟试验机对30CrNi3MoV钢进行单向热压缩试验,研究了其在变形温度950~1150 ℃、应变速率0.01~10 s-1的热变形行为,构建了应变补偿型流变应力本构方程,并绘制出该钢的热加工图。结果表明,30CrNi3MoV钢真应力-真应变曲线有3种不同特征:高温小应变速率时,表现为典型的动态再结晶过程;低温小应变速率时,曲线为动态回复特征;应变速率较大时,应力随应变的增大而增大,无明显的峰值应力。采用5次多项式拟合构建的应变耦合流变应力本构方程具有高的精确度,采用该方程获得的预测值与试验值的平均相对误差为3.2%,相关性系数R值为0.993。从热加工图中得到试验钢最佳的热加工工艺参数范围是:变形温度为1020~1150 ℃、应变速率为0.03~0.35 s-1。 相似文献
15.
《塑性工程学报》2016,(2):130-135
采用Gleeble-3800热模拟试验机,在温度850℃~1200℃、应变速率0.001s~(-1)~10s~(-1)下进行热压缩实验,研究300M高强钢的热变形行为。根据双曲正弦函数,分析全应变条件下流动应力与Z参数间的关系,得到300M高强钢的变形激活能Q及参数A、n、α的值,建立全应变本构方程。基于动态材料模型,建立300M高强钢的热加工图,并讨论了300M钢组织演化规律。结果表明,考虑应变补偿的本构方程,在实验条件内计算的流动应力与实验所测结果吻合度较高;随变形温度的升高及应变速率的减小,300M钢的奥氏体晶粒尺寸增加;变形温度900℃~1 200℃、应变速率0.001s~(-1)~0.1s~(-1)是300M高强钢较佳的热加工工艺范围。 相似文献
16.
Pb-Mg-Al合金的热变形行为与加工图 总被引:1,自引:0,他引:1
采用Gleeble-1500热模拟试验机研究Pb-Mg-Al合金在变形温度453~613 K、应变速率0.01~1 s-1条件下的热压缩流变行为,计算应力指数和变形激活能,采用Zener-Hollomon参数法构建合金的高温变形的本构关系,基于Murty准则,建立Pb-Mg-Al合金的加工图。结果表明:Pb-Mg-Al合金为正应变速率敏感材料;该合金的热压缩变形流变应力行为可用双曲正弦函数本构方程和Zener-Hollomon参数来描述,其平均变形激活能为149.524 4kJ/mol;从加工图分析并结合激活能,确定Pb-Mg-Al合金的最优变形温度和应变速率分别为533 K和0.1 s-1。 相似文献
17.
Al-Zn-Mg-Sc-Zr合金的热变形行为及加工图 总被引:2,自引:0,他引:2
在Gleeble-1500热模拟试验机上对Al-5.5Zn-1.5Mg-0.2Sc-0.1Zr铝合金进行高温等温压缩实验,研究该合金在变形温度为300~500℃、应变速率为0.01~10s-1条件下的流变行为,建立合金高温变形的本构方程和加工图,采用电子背散射衍射(EBSD)分析变形过程中合金的组织特征.结果表明流变应力随变形温度的升高而降低;当应变速率ε=10s-1,变形温度为300~500℃时,合金发生了动态再结晶.Al-5.5Zn-1.5Mg-0.2Sc-0.1Zr合金的高温流变行为可用Zener-Hollomon参数描述.在热变形过程中,随着真应变增加,合金的变形失稳区域增大.该合金适宜的变形条件如下变形温度300~360℃、应变速率0.01~0.32s-1,或变形温度380~500℃、应变速率0.56~10s-1. 相似文献
18.
采用Gleeble-3500热模拟试验机研究了微碳钢在700~1100℃、0.01~10 s-1条件下的热变形行为。确定了其在铁素体区和奥氏体区的热变形方程。建立了微碳钢在不同应变量下的热加工图(Processing Map)。结果表明,在铁素体区和奥氏体区,试验钢的峰值应力大小基本相当;试验钢在铁素体区和奥氏体区的热变形激活能分别为302 kJ/mol和353 kJ/mol;不同真应变下的热加工图相似,当变形温度为875℃,应变速率为0.01 s-1时,能量消耗效率达到最大值为0.5。 相似文献
19.
采用热/力模拟实验方法研究了409L铁素体不锈钢(409LFSS)在950~1150℃、应变速率为0.05~2.5 s-1条件下的热变形及组织变化,讨论了热变形参数对流变应力和显微组织的影响.结果表明,409L铁素体不锈钢的表观应力指数及热变形表观激活能分别为4.45、262 kJ/mol;其热变形方程为ε=5.347×1011[sinh(α·σp)]4.45exp(-262000/RT);该钢的铁素体软化机制与Z参数有关,且随着Z值从2.09×108增加到3.92×1011,热变形峰值应力相应从13.73 MPa增加到65.08 MPa. 相似文献