首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hybrid graphene-quantum dot phototransistors with ultrahigh gain   总被引:1,自引:0,他引:1  
Graphene is an attractive material for optoelectronics and photodetection applications because it offers a broad spectral bandwidth and fast response times. However, weak light absorption and the absence of a gain mechanism that can generate multiple charge carriers from one incident photon have limited the responsivity of graphene-based photodetectors to ~10(-2)?A?W(-1). Here, we demonstrate a gain of ~10(8) electrons per photon and a responsivity of ~10(7)?A?W(-1) in a hybrid photodetector that consists of monolayer or bilayer graphene covered with a thin film of colloidal quantum dots. Strong and tunable light absorption in the quantum-dot layer creates electric charges that are transferred to the graphene, where they recirculate many times due to the high charge mobility of graphene and long trapped-charge lifetimes in the quantum-dot layer. The device, with a specific detectivity of 7?×?10(13) Jones, benefits from gate-tunable sensitivity and speed, spectral selectivity from the short-wavelength infrared to the visible, and compatibility with current circuit technologies.  相似文献   

2.
The emergence of graphene with its unique electrical properties has triggered hopes in the electronic devices community regarding its exploitation as a channel material in field effect transistors. Graphene is especially promising for devices working at frequencies in the 100 GHz range. So far, graphene field effect transistors (GFETs) have shown cutoff frequencies up to 300 GHz, while exhibiting poor voltage gains, another important figure of merit for analog high frequency applications. In the present work, we show that the voltage gain of GFETs can be improved significantly by using bilayer graphene, where a band gap is introduced through a vertical electric displacement field. At a displacement field of -1.7 V/nm the bilayer GFETs exhibit an intrinsic voltage gain up to 35, a factor of 6 higher than the voltage gain in corresponding monolayer GFETs. The transconductance, which limits the cutoff frequency of a transistor, is not degraded by the displacement field and is similar in both monolayer and bilayer GFETs. Using numerical simulations based on an atomistic p(z) tight-binding Hamiltonian we demonstrate that this approach can be extended to sub-100 nm gate lengths.  相似文献   

3.
Exfoliated graphene and few layer graphene samples supported on SiO(2) have been studied by Raman spectroscopy at high pressure. For samples immersed on a alcohol mixture, an electron transfer of ?n/?P ~ 8 × 10(12) cm(-2) GPa(-1) is observed for monolayer and bilayer graphene, leading to giant doping values of n ~ 6 × 10(13) cm(-2) at the maximum pressure of 7 GPa. Three independent and consistent proofs of the doping process are obtained from (i) the evolution of the Raman G-band to 2D-band intensity ratio, (ii) the pressure coefficient of the G-band frequency, and (iii) the 2D band components splitting in the case of the bilayer sample. The charge transfer phenomena is absent for trilayer samples and for samples immersed in argon or nitrogen. We also show that a phase transition from a 2D biaxial strain response, resulting from the substrate drag upon volume reduction, to a 3D hydrostatic compression takes place when going from the bilayer to the trilayer sample. By model calculations we relate this transition to the unbinding of the graphene-SiO(2) system when increasing the number of graphene layers and as function of the surface roughness parameters. We propose that the formation of silanol groups on the SiO(2) substrate allows for a capacitance-induced substrate-mediated charge transfer.  相似文献   

4.
Monolayer and bilayer graphene films with a few hundred nm domain size were grown on ultraprecision figured 4H-SiC(0001) on-axis and 8 degrees -off surfaces by annealing in ultra-high vacuum. Using X-ray photoelectron spectroscopy (XPS), atomic force microscopy, reflection high-energy electron diffraction, low-energy electron diffraction (LEED), Raman spectroscopy, and scanning tunneling microscopy, we investigated the structure, number of graphene layers, and chemical bonding of the graphene surfaces. Moreover, the magnetic property of the monolayer graphene was studied using in-situ surface magneto-optic Kerr effect at 40 K. LEED spots intensity distribution and XPS spectra for monolayer and bilayer graphene films could become an obvious and accurate fingerprint for the determination of graphene film thickness on SiC surface.  相似文献   

5.
A graphene bilayer was grown on copper–nickel alloy foils (30 at-% Ni: 70 at-% Cu designated as a 30Ni–70Cu) via an inductively coupled plasma–chemical vapor deposition chamber, and was characterized. The first layer fully covered the foil, while there was partial coverage of the second layer. At the same time, the alloy catalyst produced a compound of magnesium silicate in some regions and of copper sulfide in other regions on which a graphene monolayer simultaneously grew without any discontinuity or boundaries of the 1st graphene monolayer between simultaneous growth and graphene-only growth regions. Compared with Cu foils, the alloy foils led to faster growth of the graphene film in graphene-only growth regions, while maintaining the same quality, homogeneity, and thickness uniformity as a monolayer graphene grown on Cu. Raman spectroscopy and scattering demonstrated that the 2D and D bands of the Raman spectra were in the same position for the monolayer graphene on 30Ni–70Cu regardless of the grown regions and for the graphene on the Cu with a full width at half maximum of ∼38 cm−1 ranging from 30 to 55 cm−1 of 2D, and without a D band in the spectra of the graphene monolayer and bilayer. Thus the resulting graphene growth is affected primarily by the Cu catalyst, partly by the compounds grown simultaneously with the graphene monolayer on the foil surface via thermal reactions of the impurities dissolved in the alloy matrix, and partly by the Ni. The quality of the graphene is dependent on the major composition of Cu catalyst in the alloy foils. On the other hands, the alloying element of Ni governs the growth kinetics unless the alloy foils is covered with the intermetallic compounds and silicate.  相似文献   

6.
Graphene is characterized by demonstrated unique properties for potential novel applications in photodetection operated in the frequency range from ultraviolet to terahertz. To date, detailed work on identifying the origin of photoresponse in graphene is still ongoing. Here, scanning photocurrent microscopy to explore the nature of photocurrent generated at the monolayer–multilayer graphene junction is employed. It is found that the contributing photocurrent mechanism relies on the mismatch of the Dirac points between the monolayer and multilayer graphene. For overlapping Dirac points, only photothermoelectric effect (PTE) is observed at the junction. When they do not coincide, a different photocurrent due to photovoltaic effect (PVE) appears and becomes more pronounced with larger separation of the Dirac points. While only PTE is reported for a monolayer–bilayer graphene junction in the literature, this work confirms the coexistence of PTE and PVE, thereby extending the understanding of photocurrent in graphene‐based heterojunctions.  相似文献   

7.
The commensurability condition is applied to determine the hierarchy of fractional fillings of Landau levels in monolayer and in bilayer graphene. The filling rates for fractional quantum Hall effect (FQHE) in graphene are found in the first three Landau levels in one-to-one agreement with the experimental data. The presence of even denominator filling fractions in the hierarchy for FQHE in bilayer graphene is explained. Experimentally observed hierarchy of FQHE in the first and second Landau levels in monolayer graphene and in the zeroth Landau level in bilayer graphene is beyond the conventional composite fermion interpretation but fits to the presented nonlocal topology commensurability condition.  相似文献   

8.
High-Field Electronic Properties of Graphene   总被引:1,自引:0,他引:1  
We have measured the energy gaps in single-layer and bilayer graphene by means of temperature dependent transport experiments in high magnetic fields up to 33 T. They follow the expected Landau level splitting when a finite level width is taken into account. The quantum Hall effect, hitherto only observed up to 30 K, remains visible up to 200 K in bilayers and even up to room temperature in single-layer graphene. Our experiments in single-layer graphene show that the lowest Landau level, shared equally between electrons and holes at zero energy, becomes extremely narrow in high magnetic fields. It is this narrowing, together with the large Landau level splitting in graphene that leads to an extremely robust localization and makes the quantum Hall effect visible up to room temperature. In high magnetic fields (B>20 T) we observe a strongly increasing resistance with decreasing temperature. These results are explained with field dependent splitting of the lowest Landau level of the order of a few Kelvin, as extracted from activated transport measurements.  相似文献   

9.
将不同层数堆叠和化学气相沉积法(CVD)生长的石墨烯在室温下进行拉曼光谱表征分析其层间耦合状态,并分析了不同温度下堆叠和CVD生长的双层石墨烯温度对其层间耦合的影响。研究结果表明:室温下CVD生长双层石墨烯和堆叠双层石墨烯的层间耦合状态截然不同;在25~250 ℃范围内,层间没有耦合作用或存在弱耦合作用的堆叠双层石墨烯的G峰峰位温度系数小于存在电子耦合的CVD生长双层石墨烯;超过250 ℃后,堆叠双层石墨烯G峰峰位温度系数变为正值,层与层之间可能产生了耦合,性质发生改变;在25~400 ℃ 范围内两种材料的2D峰半峰宽和G峰/2D峰强度比变化趋势几乎相同,但堆叠双层石墨烯波动大,对温度更敏感。  相似文献   

10.
The electronic and optical properties of monolayer and bilayer graphene are investigated to verify the effects of interlayer interactions and external magnetic field. Monolayer graphene exhibits linear bands in the low-energy region. Then the interlayer interactions in bilayers change these bands into two pairs of parabolic bands, where the lower pair is slightly overlapped and the occupied states are asymmetric with respect to the unoccupied ones. The characteristics of zero-field electronic structures are directly reflected in the Landau levels. In monolayer and bilayer graphene, these levels can be classified into one and two groups, respectively. With respect to the optical transitions between the Landau levels, bilayer graphene possesses much richer spectral features in comparison with monolayers, such as four kinds of absorption channels and double-peaked absorption lines. The explicit wave functions can further elucidate the frequency-dependent absorption rates and the complex optical selection rules. These numerical calculations would be useful in identifying the optical measurements on graphene layers.  相似文献   

11.
高分子材料的绝热特性极大地限制了其作为导热材料在工业中的应用。选用多层石墨烯作为导热填料,并分别与导热填料氧化铝(Al_2O_3)和碳化硅(SiC)复配,探究导热填料的复配对尼龙6(PA6)复合材料导热性能的影响。加入质量分数为3%石墨烯时,PA6复合材料的热导率为0.548W·m-1·K-1,相比PA6基体提高161%。通过调节石墨烯与Al_2O_3和SiC复配的比例以及复合填料量,PA6复合材料的热导率可控在0.653~4.307W·m-1·K-1之间,最高是PA6基体的20倍。为拓展石墨烯在导热材料方面的应用及PA6导热材料在工业上应用提供了有价值的实验依据。  相似文献   

12.
Kim N  Kim KS  Jung N  Brus L  Kim P 《Nano letters》2011,11(2):860-865
We report synthesis and transport properties of the minimal graphite intercalation compound, a ferric chloride (FeCl(3))(n) island monolayer inside bilayer graphene. Chemical doping by the intercalant is simultaneously probed by micro-Raman spectroscopy and Hall measurements. Quantum oscillations of conductivity originate from microscopic domains of intercalated and unintercalated regions. A slight upturn in resistance related to magnetic transition is observed. Two-dimensional intercalation in bilayer graphene opens new possibilities to engineer two-dimensional properties of intercalates.  相似文献   

13.
Abstract

We report a novel, sputtering-based fabrication method of Al2O3 gate insulators on graphene. Electrical performance of dual-gated mono- and bilayer exfoliated graphene devices is presented. Sputtered Al2O3 layers possess comparable quality to oxides obtained by atomic layer deposition with respect to a high relative dielectric constant of about 8, as well as low-hysteresis performance and high breakdown voltage. We observe a moderate carrier mobility of about 1000 cm2 V?1 s?1 in monolayer graphene and 350 cm2 V?1 s?1 in bilayer graphene, respectively. The mobility decrease can be attributed to the resonant scattering on atomic-scale defects, likely originating from the Al precursor layer evaporated prior to sputtering.  相似文献   

14.
Wafer scale homogeneous bilayer graphene films by chemical vapor deposition   总被引:1,自引:0,他引:1  
Lee S  Lee K  Zhong Z 《Nano letters》2010,10(11):4702-4707
The discovery of electric field induced band gap opening in bilayer graphene opens a new door for making semiconducting graphene without aggressive size scaling or using expensive substrates. However, bilayer graphene samples have been limited to μm(2) size scale thus far, and synthesis of wafer scale bilayer graphene poses a tremendous challenge. Here we report homogeneous bilayer graphene films over at least a 2 in. × 2 in. area, synthesized by chemical vapor deposition on copper foil and subsequently transferred to arbitrary substrates. The bilayer nature of graphene film is verified by Raman spectroscopy, atomic force microscopy, and transmission electron microscopy. Importantly, spatially resolved Raman spectroscopy confirms a bilayer coverage of over 99%. The homogeneity of the film is further supported by electrical transport measurements on dual-gate bilayer graphene transistors, in which a band gap opening is observed in 98% of the devices.  相似文献   

15.
Due to strong interactions between epitaxial graphene and SiC(0001) substrates, the overlayer charge density induced by the interface charging effect is much more attenuated than that of exfoliated graphene on SiO2. We report herein a quantitive detection of the charge properties of few-layer graphene by surface potential measurements using electrostatic force microscopy (EFM). A minor difference in surface potential is observed to mediate a sequential assembly of metal-free phthalocyanine (H2Pc) on monolayer, bilayer and trilayer graphenes, as demonstrated by scanning tunneling microscopy (STM). In order to understand this, we further executed density functional theory (DFT) calculations which showed higher adsorption energies for Pc on thinner graphenes. In this case, we attribute the unique growth behavior of Pc to its variable adsorption energies on few-layer graphene, and in turn the layer charge variations from the viewpoint of energy minimizations. This work is expected to provide fundamental data useful for related nanodevice fabrications.   相似文献   

16.
We present molecular dynamics simulation evidence for a freezing transition from liquid silicon to quasi-two-dimensional (quasi-2D) bilayer silicon in a slit nanopore. This new quasi-2D polymorph of silicon exhibits a bilayer hexagonal structure in which the covalent coordination number of every silicon atom is four. Quantum molecular dynamics simulations show that the stand-alone bilayer silicon (without the confinement) is still stable at 400 K. Electronic band-structure calculations suggest that the bilayer hexagonal silicon is a quasi-2D semimetal, similar to a graphene monolayer, but with an indirect zero band gap.   相似文献   

17.
Recently, piezoelectricity has been observed in 2D atomically thin materials, such as hexagonal‐boron nitride, graphene, and transition metal dichalcogenides (TMDs). Specifically, exfoliated monolayer MoS2 exhibits a high piezoelectricity that is comparable to that of traditional piezoelectric materials. However, monolayer TMD materials are not regarded as suitable for actual piezoelectric devices due to their insufficient mechanical durability for sustained operation while Bernal‐stacked bilayer TMD materials lose noncentrosymmetry and consequently piezoelectricity. Here, it is shown that WSe2 bilayers fabricated via turbostratic stacking have reliable piezoelectric properties that cannot be obtained from a mechanically exfoliated WSe2 bilayer with Bernal stacking. Turbostratic stacking refers to the transfer of each chemical vapor deposition (CVD)‐grown WSe2 monolayer to allow for an increase in degrees of freedom in the bilayer symmetry, leading to noncentrosymmetry in the bilayers. In contrast, CVD‐grown WSe2 bilayers exhibit very weak piezoelectricity because of the energetics and crystallographic orientation. The flexible piezoelectric WSe2 bilayers exhibit a prominent mechanical durability of up to 0.95% of strain as well as reliable energy harvesting performance, which is adequate to drive a small liquid crystal display without external energy sources, in contrast to monolayer WSe2 for which the device performance becomes degraded above a strain of 0.63%.  相似文献   

18.
Twisted bilayer graphene exhibits several angle-dependent properties due to the emergence of the van Hove Singularities in its density of states. Among them, twist-angle-dependent optical absorption has gained a lot of attention due to its presence in the visible spectral region. However, observation of such absorption is experimentally tricky due to large transmittance. In this study, we use highly decoupled twisted multilayer graphene to observe such absorption in the visible region using a simple spectrometer. A large number of twisted graphene layers in the system enable observation of such absorption evident in the visible region; the absorption band position correlates with the twist angle measured using selective area electron diffraction pattern as well as predictions from theory. While the Raman spectra were akin to those of the decoupled graphene system, at specific twist angle of \({\sim }13^{\circ }\), the spectrum contained clear signatures of G-band enhancement.  相似文献   

19.
Monolayer and bilayer graphene sheets have been produced by a solvothermal-assisted exfoliation process in a highly polar organic solvent, acetonitrile, using expanded graphite (EG) as the starting material. It is proposed that the dipole-induced dipole interactions between graphene and acetonitrile facilitate the exfoliation and dispersion of graphene. The facile and effective solvothermal-assisted exfoliation process raises the low yield of graphene reported in previous syntheses to 10 wt%–12 wt%. By means of centrifugation at 2000 rpm for 90 min, monolayer and bilayer graphene were separated effectively without the need to add a stabilizer or modifier. Electron diffraction and Raman spectroscopy indicate that the resulting graphene sheets are high quality products without any significant structural defects.   相似文献   

20.
We report a novel, sputtering-based fabrication method of Al2O3 gate insulators on graphene. Electrical performance of dual-gated mono- and bilayer exfoliated graphene devices is presented. Sputtered Al2O3 layers possess comparable quality to oxides obtained by atomic layer deposition with respect to a high relative dielectric constant of about 8, as well as low-hysteresis performance and high breakdown voltage. We observe a moderate carrier mobility of about 1000 cm2 V−1 s−1 in monolayer graphene and 350 cm2 V−1 s−1 in bilayer graphene, respectively. The mobility decrease can be attributed to the resonant scattering on atomic-scale defects, likely originating from the Al precursor layer evaporated prior to sputtering.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号