首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
For decades, soot has been modeled as fractal-like aggregates of nearly equiaxed spherules. Cluster–cluster aggregation simulations, starting from a population of primary particles, give rise to structures that closely match real aerosols of solid particles produced in flames. In such simulations, primary particle size is uncorrelated with aggregate size, as all aggregates contain primary particles drawn from the same population. Aerosol measurements have been interpreted with this geometric model. Examination of transmission electron micrographs of soot samples from various sources shows that primary particle sizes are not well mixed within an aerosol population. Larger aggregates tend to contain larger primary particles and the variation in size is much larger between aggregates than within aggregates. The soot sources considered here are all substantially not well-mixed (aircraft jet engine, inverted diffusion flame, gasoline direct injection engine, heavy-duty compression ignition engine). The observed variations in primary particle size can be explained if soot aggregates are formed and grew by coagulation in small zones of the combustion chamber, prior to dilution and transport (with minimal coagulation) to the sampling system.

Copyright 2014 American Association for Aerosol Research  相似文献   


2.
Lab-scale soot nanoparticle generators are used by the aerosol research community to study the properties of soot over a broad range of particle size distributions, and number and mass concentrations. In this study, a novel miniature inverted-flame burner is presented and its emitted soot particles were characterized. The burner consisted of two co-annular tubes for fuel and co-flow air and the flame was enclosed by the latter. The fuel used was ethylene. A scanning mobility particle sizer (SMPS) and an aerodynamic aerosol classifier (AAC) were used to measure mobility and aerodynamic size distribution of soot particles, respectively. Particle morphology was studied using transmission electron microscopy (TEM). The elemental carbon (EC) and organic carbon (OC) content of the soot were measured using thermal-optical analysis (TOA). The burner produced soot particles with mobility diameter range of 66–270?nm, aerodynamic diameter range of 56–140?nm, and total concentration range of 2?×?105–1?×?107?cm?3. TEM images showed that most soot particles were sub-micron soot aggregates. Some soot superaggregates, typically larger than 2?µm in length, were observed and their abundance increased with ethylene flow rate. TOA showed that the concentration of EC in the generated soot increased with ethylene flow rate, and the soot was observed to have high EC fraction at high ethylene flow rates. The miniature inverted-flame burner was demonstrated to produce soot nanoparticles over a range of concentrations and sizes with high EC content, making it a practical device to study soot nanoparticle properties in different applications.

Copyright © 2019 American Association for Aerosol Research  相似文献   


3.
4.
Combustion produced soot is highly variable in its composition and nanostructure, both of which are dependent upon combustion conditions. Quantification of high-resolution transmission electron microscopy (HRTEM) images for nanostructure parameters shows that soot nanostructure is dependent upon its source. In principle, this permits identification of the soot and its contribution to any pollution monitoring receptor site. Many structural and chemical aspects are subtle, unaccounted for in direct nanostructure quantification. The process of pulsed laser annealing is demonstrated to enhance slight differences in nanostructure and chemical composition. Chemistry-based limitations imposed due to nanosecond heating and microsecond cooling timescales highlight these initial compositional and structural differences—as dependent upon source-specific formation conditions. This study demonstrates laser-based heating as an analytical tool for soot differentiation by formation conditions/source by identifying operational parameters for optimal derivatization. Nanostructure changes are qualitatively shown using HRTEM and quantified using image-based fringe analysis for real and model soots.

Copyright © 2019 American Association for Aerosol Research  相似文献   


5.
Steam collection devices collecting aerosol particles into liquid samples are frequently used to analyze water-soluble particulate material. The fate of water-insoluble components is often neglected. In this work, we show that fresh soot particles can be suspended into pure water using a steam collection device, the particle-into-liquid sampler (PILS, Weber et?al. 2001). The overall collection efficiency of freshly generated soot particles was found to be on the order of 20%. This shows that, depending on the analytic technique employed, the presence of insoluble, and/or hydrophobic particles in liquid samples from steam collection cannot be neglected.

Copyright © 2018 The Author(s). Published with license by Taylor & Francis Group, LLC  相似文献   


6.
The main sources of particulate emissions from engines are fuel and lubricating oil. In this study, particles emitted by a medium speed diesel engine for locomotive use were characterized chemically by using a soot particle aerosol mass spectrometer (SP-AMS). Additionally, positive matrix factorization (PMF) was applied to the SP-AMS data for the separation of fuel from lubricating oil and/or oil additives in diesel engine emissions. The mass spectra of refractory species, i.e., metals and rBC, were included in the PMF input matrix in addition to organics in order to utilize the benefit of the SP-AMS to measure non-refractory and refractory species. In general, particulate matter emitted by the diesel engine was dominated by organics (51%) followed by refractory black carbon (rBC; 48%), trace metals and inorganic species (1%). Regarding the sources of particles, PMF indicated four factors for particle mass of which two were related to lubricating oil-like aerosol (LOA1, 29% and LOA2, 24%) and two others to diesel-like fuel aerosol (DFA1, 35% and DFA2, 12%). The main difference between LOA1 and LOA2 was the presence of soot in LOA1 and metals in LOA2 factors. DFA factors represented burned (DFA1) and unburned fuel (DFA2). The results from the PMF analysis were completed with particle size distributions, volatility measurements and particle morphology analyses.

Copyright © 2019 American Association for Aerosol Research  相似文献   


7.
Laser-induced incandescence (LII) measurements were conducted to explore the ability of LII to detect small soot particles of less than 10 nm in two sooting flat premixed flames of n-butane: a so-called nucleation flame obtained at a threshold equivalence ratio Φ = 1.75, in which the incipient soot particles undergo only minor soot surface growth along the flame, and a more sooting flame at Φ = 1.95. Size measurements were obtained by modeling the time-resolved LII signals detected using 1064 nm laser excitation. Spectrally-resolved LII signals collected in the nucleation flame display a similar blackbody-like behavior as mature soot. Soot particle temperature was determined from spectrally-resolved detection. LII modeling was conducted using parameters either relevant to those of mature soot or derived from fitting the modeled results to the experimental LII data. Particle size measurements were also carried out using (1) ex situ analysis by helium-ion microscopy (HIM) of particles sampled thermophoretically and (2) online size distribution analysis of microprobe-sampled particles using a 1 nm-SMPS. The size distributions of the incipient soot particles, found in the nucleation flame and in the early soot region of the Φ = 1.95 flame, derived from time-resolved LII signals are in good agreement with HIM and 1 nm-SMPS measurements and are in the range of 2–4 nm. The thermal and optical properties of incipient soot were found to be not radically different from those of mature soot commonly used in LII modeling. This explains the ability of incipient soot particles to produce continuous thermal emissions in the visible spectrum. This study demonstrates that LII is a promising in situ optical particle sizing technique that is capable of detecting incipient soot as small as about 2.5 nm and potentially 2 nm and resolving small changes in soot sizes below 10 nm.

© 2017 American Association for Aerosol Research  相似文献   


8.
The impact of necking and overlapping on the radiative properties of coated soot aggregates was investigated numerically by using the Discrete Dipole Approximation (DDA). The present study concerns the situations of slight overlapping between primary particles and small to moderate necking. The effects of overlapping, necking, and coating on the aggregate volume equivalent radius were presented. To show the overlapping effect, the radiative properties of aggregates consisting of N = 200 particles were evaluated with and without coating at refractive indices of m = 1.60 + 0.60i for the soot core and m = 1.46 for the coating material at four different wavelengths in the visible and near-infrared. The radiative properties of coated soot aggregates with three overlapping values of 0.05, 0.1, and 0.2 were calculated. In addition, the relationship between absorption cross-section and wavelength was illustrated at overlapping values of 0.05, 0.1, and 0.2 for uncoated and 25%, 50%, 75%, and 100% coated aggregates. As overlapping and necking increased, the calculated extinction, absorption, and scattering properties also increased in the visible and near-infrared regions. It was found that the volume equivalent radii of coated aggregates increased linearly with coating thickness when the necking values were 0.40–0.50.

Copyright © 2017 American Association for Aerosol Research  相似文献   


9.
Flame-generated soot from miniCAST burners is increasingly being used in academia and industry as engine exhaust soot surrogate for atmospheric studies and instrument calibration. Previous studies have found that elemental carbon (EC) content of miniCAST soot is proportional to the mean particle size. Here, the characterization of a prototype miniCAST generator (5201 Type BC), which was designed to decouple the soot composition from the particle size and produce soot particles with high EC and BC content in a large size range, is reported. This prototype may operate either in a diffusion-flame or a partially premixed-flame mode, an option that was not available in former models. It was confirmed that soot properties, such as EC content and Ångström absorption exponent (AAE), were linked to the overall flame composition. In particular, combustion under fuel-rich conditions provided particles with size coupled to the EC fraction and AAE, i.e. smaller particles exhibited a lower EC fraction and higher AAE. In contrast, with fuel-lean diffusion flames and especially with premixed flames under near overall stoichiometric conditions small particles (down to 30?nm) with high EC/TC ratios (>60%) and low AAE (≈1.4) could be generated even without any thermal after-treatment. This new source might thus serve in the future as a useful surrogate for engine exhaust emissions and help to improve calibration procedures of common aerosol instruments.

Copyright © 2018 The Author(s). Published with license by Taylor & Francis Group, LLC  相似文献   


10.
We study the effects of electric field strength on the mobility of soot-like fractal aggregates (fractal dimension of 1.78). The probability distribution for the particle orientation is governed by the ratio of the interaction energy between the electric field and the induced dipole in the particle to the energy associated with Brownian forces in the surrounding medium. We use our extended Kirkwood–Riseman method to calculate the friction tensor for aggregates of up to 2000 spheres, with primary sphere sizes in the transition and near-free molecule regimes. Our results for electrical mobility versus field strength are in good agreement with published experimental data for soot, which show an increase in mobility on the order of 8% from random to aligned orientations. Our calculations show that particles become aligned at decreasing field strength as particle size increases because particle polarizability increases with volume. Large aggregates are at least partially aligned at field strengths below 1000 V/cm, though a small change in mobility means that alignment is not an issue in many practical applications. However, improved differential mobility analyzers would be required to take advantage of small changes in mobility to provide shape characterization.

Copyright © 2018 American Association for Aerosol Research  相似文献   


11.
Soot is a climate forcer and a dangerous air pollutant that has been increasingly regulated. In aviation, regulatory measurements of soot mass concentration in the exhaust of aircraft turbine engines are to be based on measurements of black carbon (BC) calibrated to elemental carbon (EC) content of diffusion flame soot. The calibration soot must currently meet only one criterion: minimum EC to total carbon (TC) ratio of 0.8. However, not including soot properties other than the EC/TC ratio may potentially lead to discrepancies between different BC measurements. We studied the response of two instruments, the AVL Micro-Soot Sensor (MSS) and the Artium Laser-Induced Incandescence 300 (LII), to soot from two miniature combustion aerosol standard (mini-CAST) burners. By changing the air-fuel ratio, premixing nitrogen into the fuel, and using a catalytic stripper to remove volatile compounds, we produced a wide range of particle morphologies and EC contents. As the EC content decreased, both the instruments underreported the EC mass, but the LII diverged more severely. Upon closer investigation of eight conditions with EC/TC > 0.8, the LII underreporting was found independent of primary particle size, but increased with decreasing geometric mean diameter of the soot agglomerates. As the geometric mean diameter decreased from 160 nm to 50 nm, the differences between the LII and MSS increased from 15% to 50%. The results suggest that in addition to EC content, calibration procedures for the regulatory BC measurements may need to take particle size distributions into account.

© 2016 American Association for Aerosol Research  相似文献   


12.
Particles generated from high-temperature processes often attain an aggregate structure, with physical and chemical properties and health impacts dependent on the particles’ size and morphology. A numerical aggregate model is a useful tool to produce well-controlled ceramic particles and to predict the production of particulate air contaminants. Although extensive efforts have been directed at developing accurate and fast-running numerical aerosol codes that can model the formation and growth of aerosol aggregates using the framework of the log-normal (LN) moment method, none developed thus far can account for the bimodal particle size distribution and aggregate morphology simultaneously. In this study, two previous models, a bimodal LN model for spherical particles and a unimodal LN model for fractal aggregates, are extended to fabricate a bimodal LN model for fractal aggregates. By tracing five time-dependent variables for the particle phase, the present model can predict the formation of nucleus particles from a gas precursor and the change in the particle size distribution and morphology. Nucleation, surface growth, intramodal and intermodal coagulation, sintering, and condensational obliteration are taken into account. Numerical experiments performed for validating the new model showed that it is a robust and efficient tool for predicting both aggregate particle size distribution and morphology. The proposed model is expected to be a useful tool for simulating the formation and growth of fractal aggregate particles in multidimensional spatial domains requiring a fast-running aerosol model.

Copyright © 2019 American Association for Aerosol Research  相似文献   


13.
Objectives: The aim of this study was to evaluate the use of dual-cure resin cement to promote the bonding between a veneering PEEK and zirconia or titanium surfaces.

Materials and methods: The surface of titanium and sintered zirconia disks were gritblasted, ultra-sonically cleaned in distilled water, and dryed by oil-free air. Then, a adhesive system was applied on the clean and dry surfaces. Disks of PEEK or 30% glass-reinforced PEEK were cut from a rod and their surface were acid etched and therefore the PEEK roughness was analysed using a contact profilometer. A resin cement was then applied between the substrates and the veneering PEEK and light cured for 4 Shear bond strength tests were performed on PEEK-cement to zirconia or titanium interfaces. Scanning electron microscopy (SEM) analyses were performed to evaluate the samples surface, interface and failure mode.

Results: Surface treatment with acid etching decreased the average roughness of PEEK-based surfaces. oMicroscopic analyses by SEM revealed morphological aspects of a poor bonding between the resin-based cement and PEEK. Those aspects could be confirmed by the low mean values in shear bond strength. The fracture analysis showed that the main failure mode was adhesive, which explain the low values of shear bond strength.

Conclusion: PEEK is a promising material for dental applications. However, significant improvements on surface modifications and in chemical composition of the cement are still required for dental applications involving cementation of PEEK or PEEK-30GF to zirconia or titanium concerning a desirable long-term clinical performance of prosthetic structures.  相似文献   


14.
During occupational exposure studies, the use of conventional scanning mobility particle sizers (SMPS) provides high quality data but may convey transport and application limitations. New instruments aiming to overcome these limitations are being currently developed. The purpose of the present study was to compare the performance of the novel portable NanoScan SMPS TSI 3910 with that of two stationary SMPS instruments and one ultrafine condensation particle counter (UCPC) in a controlled atmosphere and for different particle types and concentrations.

The results show that NanoScan tends to overestimate particle number concentrations with regard to the UCPC, particularly for agglomerated particles (ZnO, spark generated soot and diesel soot particles) with relative differences >20%. The best agreements between the internal reference values and measured number concentrations were obtained when measuring compact and spherical particles (NaCl and DEHS particles). With regard to particle diameter (modal size), results from NanoScan were comparable < [± 20%] to those measured by SMPSs for most of the aerosols measured.

The findings of this study show that mobility particle sizers using unipolar and bipolar charging may be affected differently by particle size, morphologies, particle composition and concentration. While the sizing accuracy of the NanoScan SMPS was mostly within ±25%, it may miscount total particle number concentration by more than 50% (especially for agglomerated particles), thus making it unsuitable for occupational exposure assessments where high degree of accuracy is required (e.g., in tier 3). However, can be a useful instrument to obtain an estimate of the aerosol size distribution in indoor and workplace air, e.g., in tier 2.  相似文献   


15.
Residues of hazardous substances, such as chemical compounds with low vapor pressure, radioactive particles, or biological contamination can remain on surfaces for a prolonged period of time. The fate of these particles partially depends on the aerodynamic resuspension rates from the surfaces that are a function of particle and surface properties as well as the environmental conditions. The aerodynamic resuspension can be used for non-contact surface sampling. The removal rates of microscopic explosive trimethylenetrinitramine (RDX) particles from smooth glass surfaces in a controlled flow environment are investigated in this paper. The shear stress in the flow cell is calculated using computational fluid dynamics as a function of velocity. The RDX particle samples are prepared by dry transfer. Particle sizes and morphologies are measured by 3D scanning electron microscopy (SEM) and optical profilometry. The resuspension rates are calculated based on the changes in the total coverage area before and after exposure to aerodynamic forces. These rates are correlated with wall shear stresses, particle size, and morphology. For non-spherical particles, the removal rates are proportional to the particle shape factor defined as a ratio of particle height to the projected equivalent diameter.

Copyright © 2019 American Association for Aerosol Research  相似文献   


16.
The aim of this in vitro study was to evaluate the effects of chlorhexidine gluconate (2%), sodium hypochloride (2.5%), ozone gas, and boric acid at different concentrations (1%, 3%, 5%, and 7%) on microleakage from composite restorations.

In a total of 80 extracted human canine teeth, a class V cavity was opened on the buccal surface and the samples were separated into eight groups. In the control group, no procedure was applied for cavity disinfection, then composite restoration (Z250, 3M) was made using single-stage, self-etch adhesive (Single Bond 3M). In the other groups, seven different disinfectants were used, then the cavity was restored. The teeth were split into two in the buccolingual direction, parallel to the long axes. Stain penetration was examined under stereomicroscope and scored. Examination with SEM was made on one sample from each group, selected at random. Statistical evaluations were made using Dunnett C Post Hoc Comparison and Kruskal–Wallis H tests.

In the occlusal region evaluation, the groups with the lowest level of leakage were the 3% and 5% boric acid groups, and the highest levels of microleakage were determined in the chlorhexidine group and the 1% boric acid group. In the gingival region, the lowest level of microleakage was in the 5% boric acid group and the highest levels were determined in the 1% and 7% boric acid groups.

Boric acid disinfectants used at suitable concentrations were not seen to create a risk in respect of microleakage.  相似文献   


17.
Inhalation of aerosols containing pathogenic viruses can result in morbidity, in some cases leading to mortality. The objective of this study was to develop a model for assessing how infectious viruses might distribute in airborne particles using bacteriophage MS2 as a surrogate for human viruses. Particle deposition in the respiratory system is size-dependent, and small virus-containing particles can be inhaled deeply into the lower lungs, potentially leading to more severe respiratory disease manifestations. Laboratory-generated virus-containing particles were size-selected by a differential mobility analyzer and then collected by the newly introduced Super-Efficient Sampler for Influenza Virus. The number of infectious and total viruses per particle as a function of particle size varied with the spraying medium: it approximated a cubic exponential value scaling for deionized (DI) water, a quartic exponential value for artificial saliva (AS), and between quadratic and cubic exponential value for beef extract solution (BES). The survivability of MS2 did not change significantly with particle size for DI water and BES, while that for AS was maximum at 120?nm. Viruses could be homogeneously distributed or aggregated inside or on the surface of the particles, depending on the composition of the spraying medium.

Copyright © 2019 American Association for Aerosol Research  相似文献   


18.
The interface strength of a Shape Memory Polymer – Stainless Steel (SMP-SS) laminate system has been studied under a wide range of test conditions. The adhesive strength of the laminates has been explored using the peel test at room temperature as well as the glass transition temperature of the SMP. The analysis was also repeated at varying speeds and SMP thickness in order to quantify the effect of strain rate and adherend thickness on the bond strength of the laminate.

The experimental tests have been validated using finite element analysis of the SMP – SS laminate system. The finite element study further explores the role of polymer stresses and strains in the polymer film and adhesive layer in inducing delamination and wrinkling.

Significant decrease in strains in the adherend are observed on increasing its thickness. The adhesive strength of the laminate system is found to decrease at higher temperatures. Also the adherend is observed to wrinkle at longitudiunal strains nearing 35%.  相似文献   


19.
The effective density and size-resolved volatility of particles emitted from a Rolls-Royce Gnome helicopter turboshaft engine are measured at two engine speed settings (13,000 and 22,000 RPM). The effective density of denuded and undenuded particles was measured. The denuded effective densities are similar to the effective densities of particles from a gas turbine with a double annular combustor as well as a wide variety of internal combustion engines. The denuded effective density measurements were also used to estimate the size and number of primary particles in the soot aggregates. The primary particle size estimates show that the primary particle size was smaller at lower engine speed (in agreement with transmission electron microscopy analysis). As a demonstration, the size-resolved volatility of particles emitted from the engine is measured with a system consisting of a differential mobility analyzer, centrifugal particle mass analyzer, condensation particle counter, and catalytic stripper. This system determines the number distributions of particles that contain or do not contain non-volatile material, and the mass distributions of non-volatile material, volatile material condensed onto the surface of non-volatile particles, and volatile material forming independent particles (e.g., nucleated volatile material). It was found that the particulate at 13,000 RPM contained a measurable fraction of purely volatile material with diameters below ~25 nm and had a higher mass fraction of volatile material condensed on the surface of the soot (6%–12%) compared to the 22,000 RPM condition (1%–5%). This study demonstrates the potential to quantify the distribution of volatile particulate matter and gives additional information to characterize sampling effects with regulatory measurement procedures.

Copyright © 2017 American Association for Aerosol Research  相似文献   


20.
Single particle levitation is a key tool in the analysis of the physicochemical properties of aerosol particles. Central to these techniques is the ability to determine the size of the confined particle or droplet, usually achieved via optical methods. While some of these methods are extremely accurate, they are not suitable for all applications and sample types, such as solid or optically absorbing particles. In this work, measurements of the radius, mass, and charge of droplets in a linear quadrupole electrodynamic balance (LQ-EDB) are reported. Using the elastic light scattering pattern produced by laser illumination, a method to determine the radius is described, with an accuracy of as good as ±60?nm and a sensitivity to changes on the order of 10?nm. The effect of refractive index on these measurements is explored by application of the technique to simulated data using Mie theory. In addition to radius, the relative and absolute mass and charge of droplets in the trap is measured from the voltage required to stabilize their vertical position. These measurements are facilitated by stacking multiple droplets in the LQ-EDB and solving the force balance equations to yield both parameters. These approaches are demonstrated through measurements of the evaporation of pure ethylene glycol and pure water droplets, the change in density of an aqueous glycerol solution as water evaporates, and the mass and charge of pure glycerol droplets.

Copyright © 2019 American Association for Aerosol Research  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号