首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Si对中锰钢淬火配分组织和性能的影响   总被引:1,自引:0,他引:1  
将20Mn5钢和20Mn5Si2钢进行淬火和配分(Q&P)工艺处理,用扫描电镜观测其微观组织,用X射线法测量残余奥氏体量,研究了Si对其微观组织和力学性能的影响.结果表明,试验钢中的奥氏体含量明显高于传统的TRIP钢和Q&P 工艺处理钢;在相同Q&P工艺条件下,20Mn5Si2钢比20Mn5有较多的残余奥氏体,析出物数...  相似文献   

2.
We study here the underlying factors that govern the stability of austenite in a medium Mn (Fe–0.18C–11Mn–3.8Al) (wt-%) steel. In this regard, a novel heat treatment involving intercritical quenching and tempering was designed to obtain high total elongation (TEL) and high ultimate tensile strength (UTS) in the cold-rolled steel. And the UTS and TEL approached 920–1150?MPa and 35–65%, respectively. The product of TEL and UTS (PSE) exceeded 40?GPa%, with a maximum value of 60?GPa%. A detailed analysis of microstructure before and after tensile deformation revealed that the TRIP effect occurred and the stability of austenite was predominantly governed by the grain sizes of austenite rather than the orientation of austenite grains. The theoretical analysis of work hardening data suggested that the superior elongation of medium Mn TRIP steel is related to the high stability of austenite and the cooperative deformation of ferrite.  相似文献   

3.
Fine film-like stable retained austenite was obtained in a Fe–0.08C–0.5Si–2.4Mn–0.5Ni in weight percent (wt.%) steel by the two-step intercritical heat treatment. The first step of intercritical annealing creates a mixed microstructure of preliminary alloy-enriched martensite and lean alloyed intercritical ferrite, which is called as “reverted structure” and “un-reverted structure”, respectively. The second step of intercritical tempering is beneficial for producing film-like stable reverted austenite along the reverted structure. The stabilization of retained austenite was studied by using scanning electron microscopy (SEM), transmission electron microscopy (TEM), dilatometry and X-ray diffraction (XRD) analysis. The two-step austenite reverted transformation associated with intercritical partition of C, Mn and Ni is believed to be the underlying basis for stabilization of retained austenite during the two-step intercritical heat treatment. Stable retained austenite is not only beneficial for high ductility, but also for low temperature toughness by restricting brittle fracture. With 10% (volume fraction) of retained austenite in the steel, high low temperature toughness with average Charpy impact energy of 65 J at −80 °C was obtained.  相似文献   

4.
采用IQP工艺和EPMA、SEM和XRD等手段,研究了3种前驱体对含Cu低碳钢残余奥氏体含量及力学性能的影响。结果表明,双相区保温初期试验钢奥氏体长大由C配分控制,后期由合金元素Mn、Cu配分控制;双相区保温奥氏体化后,双相区配分后形成弥散分布的局部高浓度Mn、Cu区域仍保留富集效果,在随后的淬火-碳配分阶段易于形成残余奥氏体。经IQP处理后,前驱体为P+F的钢室温组织中马氏体板条较粗,原始奥氏体晶界并不明显;前驱体为F+M钢得到的马氏体板条有序细密;前驱体为M的钢室温组织中马氏体板条更加细密。其中,前驱体组织为M的钢中残余奥氏体量最高,延伸率为24.1%,强塑积可达25 338 MPa·%,综合性能最好。  相似文献   

5.
Fe-0.6C-1.5Si-0.8Mn steel was studied to determine the effect of the microstructure on transformation-induced plasticity (TRIP) of silicon-containing low-alloy steel. A remarkable increase in elongation through TRIP can develop in the steel subjected to the following heat treatments: (1) austemper combined with subcritical annealing (SA Aus-T): subcritical annealing at 993K followed by austempering at 673K and then light tempering (after austenitization at 1173K); (2) austemper coupled with interrupted quenching (IQ Aus-T): interrupted quenching at 533K followed by austempering at 673K and light tempering (after austenitization at 1173K).

The SA Aus-T treatment produced the triple structures of carbide-free upper bainite, retained austenite (γR), and free ferrite. As a result of the IQ Aus-T treatment, the triple structures of carbide-free upper bainite, γR, and tempered martensite appeared. The results are described and microstructural factors in TRIP are discussed.  相似文献   


6.
The present work employs nano-indentation technique to investigate the C partitioning in a medium Mn steel subjected to quenching and tempering process. It is found that the C partitioning between martensite and austenite is inhomogeneous. Particularly, the large lenticular martensite has negligible C partitioning into the austenitic matrix as it maintains an ultra-high nanohardness comparable to the one without tempering. Strategies to suppress the formation of large martensite are discussed.  相似文献   

7.
The effect of various versions of quenching and partitioning (Q&P) and austempering plus tempering (A&T) processes on the combined properties and microstructure of a 0.2C–0.8Si–2.2Mn bainitic steel has been investigated. Results show that the steel exhibits a higher value of product of strength and elongation (PSE) than that reported before with similar compositions. The one-step Q&P process at 230°C and A&T process at 450°C can result in a toughness higher than 80?J?cm?2 and a relatively high PSE (above 29.8?GPa%). The alloy design of this steel is suggested to be beneficial for industrial production because there is a big window for similar PSE. The long-partitioning time (1?h) has good effect on combined properties.  相似文献   

8.
ABSTRACT

Processing conditions better than those of conventional quenching and partitioning process are suggested for 0.2C–10Mn–2Al steel. The steel can retain 24% of austenite on quenching to room temperature and effectively partition carbon from martensite to austenite at 200°C. The resulting tensile properties were comparable to those produced by conventional quenching and partitioning. Moreover, the suggested processing condition resolves an issue of intercritically annealed medium Mn steels by improving the yield strength and eliminating yield point phenomenon as well as serrated flow.

This paper is part of a Thematic Issue on Medium Manganese Steels.  相似文献   

9.
对690 MPa级海工钢进行“淬火+两相区退火+回火”三步热处理,研究了回火温度对其组织和性能的影响、分析了力学性能变化与组织演变和残余奥氏体体积分数之间的关系。结果表明:回火后实验钢的显微组织为回火贝氏体/马氏体、临界铁素体和残余奥氏体的混合组织。随着回火温度的提高贝氏体/马氏体和临界铁素体逐渐分解成小尺寸晶粒,而残余奥氏体的体积分数逐渐增加;屈服强度由787 MPa降低到716 MPa,塑性和低温韧性明显增强,断后伸长率由20.30%增至29.24%,-40℃下的冲击功由77 J提升至150 J。残余奥氏体体积分数的增加引起裂纹扩展功增大,是低温韧性提高的主要原因。贝氏体/马氏体的分解和残余奥氏体的生成,引起组织细化、晶粒内低KAM值位错的比例逐渐提高和小角度晶界峰值的频率增大,使材料的塑性和韧性显著提高。  相似文献   

10.
ABSTRACT

A quench and partition (Q&P) process was combined with tempering in a medium Mn steel. The partitioning treatment enriched the austenite in carbon, and stabilised the austenite against transformation during cooling. The ductility of Q&P steel is significantly improved by tempering, with negligible loss in strength. The ductility was found to be determined by the martensite in the structure, rather than the austenite in the present case. The reason for the significant improvement in the ductility with tempering was suggested to be the reduction in the dislocation density after extended tempering treatment. The energy absorption of this alloy was increased to 28.5?GPa·% together with an ultrahigh tensile strength ~1400?MPa, which is one of the largest observations in this system.  相似文献   

11.
Abstract

The aim of the present investigation was to determine the influence after quenching, of tempering within the temperature range As–Af (i.e. α′ →+γ transformation range) on the fracture toughness of an austenitic–martensitic high nickel steel with additions of molybdenum, niobium, and titanium. It has been found that for the heat treatment cycle applied, the most advantageous values of fracture toughness JIc are obtained after tempering at ~975 K. The increase in the JIc value observed after tempering above 950K results from a decrease in the proportion of martensite, due to transformation to mechanically unstable austenite, which when subjected to deformation at room temperature, transforms into martensite.

MST/1933  相似文献   

12.
In the present study, we design a novel hot stamping steel containing high amounts of C and Si and micro-alloying element (i.e. Nb). The steel was subjected to quenching and partitioning (Q&P) process. The new Q&P treated hot stamping steel exhibits a significantly improved mechanical property in terms of strength, ductility and impact toughness compared with the traditional 22MnB5 hot stamping steel. The influence of partitioning time on the microstructure and mechanical properties was investigated. The retained austenite (RA) fraction and the carbon content of RA significantly increased with higher partitioning times. With increasing partitioning time, the uniform elongation, total elongation, strength-ductility balance and impact energy was also remarkably enhanced. The maximum strength-ductility balance achieves around 23?GPa %.  相似文献   

13.
采用EMPA,SEM和XRD等手段,研究低碳硅锰钢在双相区保温淬火(I&Q)、双相区保温+奥氏体化+盐浴配分(I&Q&P)和奥氏体化+盐浴配分(Q&P)工艺中的C,Mn元素配分行为及对残余奥氏体的综合作用。结果表明:经I&Q工艺处理后,得到马氏体、铁素体加少量残余奥氏体混合组织,C,Mn在马氏体中出现了富集,并且C富集程度高于Mn;经I&Q&P工艺处理后,C,Mn在板条马氏体中呈现不均匀分布,C的局部富集现象更明显,按C,Mn含量的不同,马氏体可分为"高C高Mn"、"高C低Mn"和"低C低Mn"3种;相比较Q&P工艺中只有C配分作用稳定残余奥氏体,I&Q&P工艺在C,Mn配分综合作用下,能得到更多的残余奥氏体。  相似文献   

14.
The applicability of quenching–partitioning–tempering (Q–P–T) process to an ultrahigh carbon steel (UHCS) has been investigated by means of optical microscopy (OM), scanning electronic microscopy (SEM) combined with energy-dispersive spectrometry (EDS), X-ray diffraction (XRD) and mechanical property tests. The molten steel was modified with a multi-component modifier-rare earth and a low melting point alloy (Al–Bi–Sb) before casting into iron molds. Observations showed that the carbide exists as partly isolated and fine blocky structure in as-cast microstructure, indicating good effect of modification. After the Q–P–T treatment, carbon was partitioned into austenite from martensite, creating a mixture of carbon-depleted martensite, carbon-enriched retained austenite and fine carbides. This kind of microstructure leads to a much higher impact toughness, 32 J/cm2, in comparison with the value, i.e., no more than 20 J/cm2, of the conventional quenching and tempering (Q–T) treatment at the same hardness level. Furthermore, wear-resisting property of the steel has also been investigated. It showed that the Q–P–T treated steel has better abrasive wear resistance, about 18% increased, compared with the Q–T treated alloy under high load conditions.  相似文献   

15.
A novel application of quenching and partitioning (Q&P) treatment to warm stamping of a warm-rolled medium Mn steel was investigated. The results show that Q&P could improve yield strength of auto-parts from the formation of carbides and twinned martensite, and reduce the yield point elongation for carbon partitioning during Q&P process and a higher dislocation density. Regardless of stamping temperature either the single austenite or dual-phase region, an extraordinary product of strength and ductility (≥24 GPa·%) was achieved, which is two or three times higher than those of hot-stamped boron steels. The combined warm rolling and warm stamping process with Q&P treatment may have potential to implement the application of medium Mn steels for ultrahigh strength-ductile auto-parts.  相似文献   

16.
Bai  Shao-bin  Xiao  Wen-tao  Wang  Yi-de  Li  Da-zhao  Zhuang  Zhi-hua  Zhang  Wang-gang  Liang  Wei 《Journal of Materials Science》2021,56(24):13801-13813

To optimize the formability and strength of hot-rolled Fe-10Mn-0.4C-2Al-0.6 V medium Mn steel, intercritical quenching and tempering processes were carried out. The strength of the steel was enhanced, and the Lüdders platform was eliminated. The higher strength of the steel was attributed to the occurrence of a complex twinning effect, martensitic transformation and V-carbide precipitation during tensile deformation. In particular, the twin martensite structure retained after the quenching-tempering process served as another previous twin to accelerate the generation of nanomechanical twins in recrystallized austenite grain. The occurrence of transformation-induced plasticity (TRIP) of austenite with poor stability in non-recrystallized regions stimulated the TRIP and twinning-induced plasticity (TWIP) effects in austenite with high stability in recrystallized regions. Therefore, two pathways to improve the formability and optimize the mechanical properties of medium Mn steel by adjusting the quenching and tempering processes were proposed in this paper: (1) Manufacturing more martensite twin structures and (2) regulating the balance of austenite stability in both recrystallized and non-recrystallized regions.

  相似文献   

17.
新型贝氏体钢的组织和冲击疲劳性能研究   总被引:2,自引:0,他引:2  
通过显微组织观察和冲击疲劳实验,研究了不同热处理新型贝氏体钢的组织和冲击疲劳性能.结果表明:新型贝氏体钢正火低温回火的组织由贝氏体铁素体和奥氏体组成,淬火低温回火组织为回火马氏体和残余奥氏体,正火低温回火热处理的冲击疲劳寿命高于淬火低温回火热处理的冲击疲劳寿命.分析了多冲疲劳裂纹扩展的行为,讨论了正火低温回火提高冲击疲劳的原因.  相似文献   

18.
A novel type of quenching and partitioning steel was developed using direct quenching after hot finishing rolling, followed by intercritical annealing, quenching and partitioning (DQ–Q&P) process. The desirable combination of strength and ductility was obtained. The effect of various intercritical annealing temperatures on the microstructures and mechanical proprieties was studied. With the decreasing intercritical annealing temperature, the amount of acicular retained austenite increased, which exhibited a good work-hardening behaviour resulting in enhanced tensile strength and total elongation. After annealing at 740°C, superior mechanical properties, which were the ultimate tensile strength of 1015?MPa and total elongation of 32.22%, were achieved.  相似文献   

19.
《Materials Letters》2007,61(4-5):1023-1026
A 0.15% C–1.2% Si–1.7% Mn steel was intercritically annealed at 780 °C for 5 min and then isothermally held at 400 °C for 4 min followed by oil quenching to room temperature and the annealed microstructure consist of 75% ferrite , 15% bainite and 10% retained austenite was produced. Samples of this steel with triple phase structure were tensile tested at temperature range of 25–450 °C. Stress–strain curves showed serration flow at temperature range of 120–400 °C and smooth flow at the other temperatures. All of the stress–strain curves showed discontinuous yielding at all testing temperatures. Both yield and ultimate tensile strength decreased with increasing temperature, but there exists a temperature region (120–400 °C) where a reduction of strength with increasing temperature is retarded or even slightly increased. The variation in the mechanical properties with temperature was related to the effects of dynamic strain aging, high temperature softening, bainite tempering and austenite to martensite transformation during deformation.  相似文献   

20.
Abstract

The low temperature mechanical properties of 0·4C–Cr–Mo–Ni steel can be improved significantly by thefollowing treatments. Modified oil quenching (MOQ): interrupt quenching at 573 K just below the martensitic transformation temperature followed by short time tempering at 673 K (up-quenching) before oil quenching and subsequently 473 K tempering (after conventional 1133 K austenitisation). Modified austempering (MA): the same up-quenching treatment followed by austempering at 673 K and subsequently water cooling. Each modified treatment was compared with its corresponding conventional treatment. The MOQ treatment significantly improved the notched tensile strength of the steel with slightly increased 0·2%PS and UTS, owing to an increase infracture ductility over the temperature range 123–203 K and also improved the Charpy impact energy of the steel over the temperature range 203–373 K. As a result of the MA treatment, the 0·2%PS and UTS and the notched tensile strength were developed remarkably with little change of fracture ductility over the temperature range 123–293 K. This treatment also improved the Charpy impact energy of the steel over the temperature range 203–293 K. The beneficial effect of the modified heat treatments on the mechanical properties is briefly discussed in terms of a modified law of mixtures, fibre loading theory, and fracture profiles.

MST/1157  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号