首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Development of pulsed‐techniques aimed to generate highly ionized target species and high plasma density opens up a new way to tailor composition, structure, and properties of coatings. In this work, TiAlSiN coatings have been deposited at various negative substrate biases (Vs) using deep oscillation magnetron sputtering by sputtering a TiAlSi compound target in Ar/N2 mixtures. The increase in Vs from ?30 to ?120 V resulted in a decrease in (111)‐preferred orientation and grain size, together with the increase in residual stress and rough morphology. The nc‐TiAlN/a‐Si3N4 nanocomposite structure was obtained in coatings. The highest hardness and Young's modulus reached 42.4 and 495 GPa at ?120 V, respectively. However, at ?60 V, the coatings with the highest H/E* and H3/E*2 ratios of 0.095 and 0.332 exhibited excellent adhesion with above HF1 level, the lowest coefficient of friction (COF) of 0.35 and specific wear rate of 2.1 × 10?7 mm3 N?1 m?1. Wear mechanism changed from the mixture of severe adhesive, oxidative and abrasive wear to mild oxidative wear to severe oxidative wear. TiAlSiN coatings with high hardness and H/E* and H3/E*2 ratios exhibited the decrease in COF and wear rate due to refined grains in uniform distribution, which well promoted oxide layers formed on sliding contact surface.  相似文献   

2.
The purpose of this experimental work is to evaluate the mechanical and tribological properties of chromium aluminum nitride (CrAlN) coating deposited on hypereutectic Al–Si-alloy. The microstructural, topographical analysis, and composition of CrAlN-coated substrates were examined by using scanning electron microscopy and energy-dispersive spectroscopy, whereas phase formation was analyzed by X-ray Diffractometer (XRD). Atomic force microscopy (AFM) images were taken from the substrate surface before and after the coating. The scratch adhesion of film-to-substrate was measured by using scratch machine. In an effort to understand the critical point, loads were identified by Scratch track in terms of load vs. depth as a function of scan distance. Moreover, the critical load as the beginning of chipping or spallation of the coating was studied. The tribological properties of CrAlN coating were evaluated by pin on disc tribometer at room temperature. XRD analysis showed that CrAlN successfully deposited with a preferential orientation along the (1?1?1), (2?0?0) and (2?2?0) peaks. The AFM images of coated sample confirmed that the surface roughness was lower(Ra = 14 nm) as compared to uncoated sample (Ra = 46 nm). The hardness of coated hypereutectic Al–Si-alloy was increased about 5.8 times as compared to uncoated sample. The coefficient of friction and wear rate of coated specimen were found to be improved. The coating adhesion strength of 2341 mN was obtained with coating parameters for deposition of DC power (350 W), RF power (200 W), temperature (175 °C), and nitrogen flow rate (5%).  相似文献   

3.
《Ceramics International》2023,49(18):30115-30124
Nowadays, one of the most important challenges in the tribology field is to avoid the excessive consumption of soft metals such as Ag at elevated temperatures through the re-design of the self-lubricant films, to achieve the long-term lubricant under the temperature-cycling environments, for widely used in real industrial applications. This paper took up this challenge to develop a novel green film, by composing nano-particles Ag into the amorphous SiNx matrix using magnetron sputtering system, for achieving the long-term lubricant under the room temperature (RT)-500 °C temperature-cycling conditions. Results showed that the film exhibited a dual-phase of face-centered cubic (fcc) Ag and amorphous SiNx. An excellent RT-500 °C wear-resistance performance was observed for the films with the Ag content of 1.3–9.4 at.%, whilst the film at 15.8 at.% Ag exhibited the best anti-frictional performance (COF 0.3–0.5 for RT-500 °C conditions) at the cost of wear rate. The self-lubricant tribology behaviors under the RT-500 °C cycling conditions were mainly attributed by the synergism of: (1) mechanical properties, (2) excellent high-temperature chemical stability of SiNx matrix, and (3) the lubricant nature of Ag and its elevated temperature diffusion behaviors.  相似文献   

4.
采用直流与射频磁控反应溅射法在硬质合金YG8衬底上制备了氮化碳(carbon nitride,CNx)薄膜。研究了溅射方式、衬底腐蚀处理对薄膜摩擦学性能的影响。结果表明:射频反应磁控溅射制备的CNx薄膜的膜基结合力和摩擦因数明显高于直流反应磁控溅射薄膜的,适当的负偏压可以提高膜基结合力。衬底化学腐蚀预处理能够大幅度提高CNx薄膜的膜基结合力,对直流溅射CNx薄膜的摩擦因数影响不大,但能降低射频溅射CNx薄膜的摩擦因数。射频反应磁控溅射法制备的CNx薄膜比直流溅射法制备的CNx薄膜耐磨性能好。衬底化学腐蚀预处理和溅射时对衬底施加适当的负偏压均有利于耐磨性能的提高。  相似文献   

5.
Influences of thermal annealing on structural, optical and morphological properties of the tantalum pentoxide (Ta2O5) thin films were investigated and anti-reflective performances were discussed in detail. The Ta2O5 thin films were deposited onto Corning Glass (CG), Si, GaAs and Ge substrates by radio-frequency (RF) magnetron sputtering technique using Ta2O5 ceramic target. The obtained secondary ion mass spectroscopy (SIMS) analysis results showed that uniform Ta and O distribution have formed throughout depth of the films deposited on substrates. The X-Ray diffraction (XRD) results indicated that the annealed Ta2O5 thin films at 100, 200, 300 and 500?°C have exhibited amorphous (a-Ta2O5) characteristic. The increased temperature has resulted in increasing the surface roughness from 0.67 to 1.60?nm. The optical transmittance of the annealed thin films has increased from 70.85 to 80.32% with increasing temperature. Spectroscopic ellipsometer (SE) measurement results demonstrated that the increased temperature has increased the refractive index of the Ta2O5 thin film from 2.11 to 2.18. The Ta2O5 thin film has reduced the average optical reflectivity of the Si, GaAs and Ge substrates by 78, 55 and 70%, respectively. In addition, thermal annealing process has decreased the optical reflectivity of the film. The obtained experimental results showed that single-layer Ta2O5 thin films can be used as anti-reflective layer in optical and optoelectronic applications. The best optical transmittance and anti-reflective performance were obtained at the annealing temperature of 500?°C.  相似文献   

6.
Electrodeposition and magnetron sputtering techniques have been employed for the deposition of Ni and bilayer NiCrN coatings, respectively, on mild steel substrate. Ni electrodeposition was performed using sulfate Watt’s bath, while magnetron sputtering was performed on electrodeposited Ni using DC power 350 W and base pressure of 3 × 10?5 Torr in order to prepare bilayer NiCrN coatings. Structural and mechanical properties of Ni and bilayer NiCrN coatings have been investigated using various characterization techniques such as SEM-EDX, XRD, hardness, adhesion testing, etc. SEM analysis reflects the formation of spherical/nodular particles of varying sizes in NiCrN coating whereas Ni coating shows irregular, agglomerated, and non-uniform distribution of particles. Formation of hard CrN phase in NiCrN coating has been confirmed by XRD and EDX. NiCrN coating exhibits better hardness in comparison with Ni coating due to the formation of nitride phase. Micro scratch testing of bilayer NiCrN coating shows better interlayer adhesion and adhesion with mild steel substrate. The combination of electrodeposition and magnetron sputtering can produce inexpensive NiCrN coating containing hard CrN phase with better mechanical properties for automotive applications.  相似文献   

7.
Diamond material and its smooth coatings are used for very low wear and relatively low friction. Major limitations of the true diamond coatings are that they need to be deposited at high temperatures, can only be deposited on selected substrates, and require surface finishing. Hard amorphous carbon (a-C), commonly known as diamondlike carbon (DLC), coatings exhibit mechanical, thermal and optical properties close to that of diamond. These can be deposited with a large range of thicknesses by using a variety of deposition processes, on variety of substrates at or near room temperature. The coatings reproduce substrate topography avoiding the need of post finishing. Friction and wear properties of some DLC coatings can be very attractive for tribological applications. The largest industrial application of these coatings is in magnetic storage devices. Recent developments in the chemical, mechanical and tribological characterization of the ultra-thin coatings are reviewed in this paper. The prevailing atomic arrangement in the DLC coatings is amorphous or quasi-amorphous with small diamond (sp3), graphite (sp2) and other unidentifiable micro- or nanocrystallites. The mechanical and tribological properties of the DLC coatings are dependent upon the deposition technique. Thin coatings deposited by filtered cathodic arc, ion beam and ECR-CVD hold a promise for tribological applications. Coatings as thin as 5 nm in thickness provide wear protection.  相似文献   

8.
以经旋切的卷状聚氨酯泡绵为载体,先在低温下采用等离子表面清洗机清洗载体,再采用磁控溅射技术对泡棉进行导电化处理,对其预镀铁后采用氯化铁体系沉积液电沉积加厚铁镀层,最后采用烧结法除去聚氨酯泡绵骨架,即获得泡沫铁。给出了各个工序的工艺条件,讨论了导电化处理、预镀、加厚电沉积铁、热处理等工艺参数对泡沫铁性能的影响。  相似文献   

9.
An in-depth investigation of the structure, properties, scratch adhesion characteristics of graded Cr-CrN-Cr(1-x)AlxN coatings synthesized onto M42 steel substrates using closed – field unbalanced magnetron sputtering (CFUBMS) was carried out. Advanced microscopy (scanning and transmission electron microscopy), focused ion beam (FIB) imaging, X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD) and micro–scratch tests was used to investigate the microstructure, mechanical properties and scratch performance as a function of Al content. FIB and TEM investigations revealed that the coatings exhibited a distinct structure; i.e., an adhesive Cr layer, a CrN transition layer and a graded CrAlN top layer with a face centered cubic (FCC) B1 structure. A columnar morphology was exhibited by the coatings and the dimensions of the columnar grains decreased with increasing Al content. Residual stress measurements, obtained from the XRD – sin2ψ method, revealed increasing compressive stresses with increasing Al content. Furthermore, nanoindentation tests showed an increase in mechanical properties, fracture toughness index (H/E) and plastic deformation resistance (H3/E2) as the Al content increased, accompanied by a decrease in the critical load, LC, during scratch testing implying a decrease in scratch toughness.  相似文献   

10.
热处理工艺对ZrW2O8薄膜组成与形态的影响   总被引:2,自引:1,他引:1  
采用射频磁控溅射法在石英基片上制备了厚度约为200 nm的ZrW2O8薄膜.在不同温度下对薄膜进行热处理,通过X射线衍射和扫描电镜研究了热处理温度与热处理过程中通氧量大小对ZrW2O8薄膜组分与形态的影响.结果表明:在空气中热处理时,随着热处理温度的升高,薄膜由非晶态转变为晶态:经750℃处理的薄膜组成中ZrW2O8含量增大;热处理温度再升高,ZrW2O8逐步分解直至消失.在热处理过程中通入氧气,能使薄膜ZrW2O8含量增加,晶化效果更好,薄膜的形态更平整:在740℃热处理过程中通氧量达到20.8L/s后,再增加通氧量对薄膜的晶化影响不大.  相似文献   

11.
Surface modification of surgical instruments is carried out in order to improve the antibacterial performance against the surgical site infections. Healthcare acquired infections (HAI) and Nosocomial infections are one of the leading causes of complications/deaths after surgery. There is an increasing trend of antibiotic resistance in bacteria such as, vancomycin-resistant Enterococcus (VRE), carbapenem-resistant Enterobacteriaceae (CRE), multi-drug-resistant Mycobacterium tuberculosis (MDR-TB), methicillin-resistant Staphylococcus aureus (MRSA), and Neisseria gonorrhoeae. Thus, surfaces that counteract the adherence and growth of bacteria are employed to avoid the infections. In present study, stainless steel 316 L (SS 316 L) was coated with Silver/Tantalum oxide (Ag/Ta2O5) nanocomposite using reactive magnetron sputtering. The as-sputtered Ag/Ta2O5 nanocomposite (a-Ag/Ta2O5) film was crystallized via thermal treatment at 400 °C. Due to the annealing, the AgNPs migrated to the surface through the columnar paths of the a-Ag/Ta2O5. Thus, the crystallized layer (c-Ag/Ta2O5) exhibited 302% improvement in adhesion strength and enhanced hydrophopibicity. The c-Ag/Ta2O5 also demonstrated excellent antibacterial performance against Staphylococcus aureus (NCTC 6571) (gram-positive bacteria) and Escherichia coli (ATCC 15597) (gram-negative bacteria) according to the inhibition zone measurements. These results suggest that c-Ag/Ta2O5 deposition on SS 316 L substrate has a high potential to serve as an adherent, antibacterial layer on the surgical tools, in order to resist surgical site infections.  相似文献   

12.
Zinc sulfide [ZnS] thin films were deposited on glass substrates using radio frequency magnetron sputtering. The substrate temperature was varied in the range of 100°C to 400°C. The structural and optical properties of ZnS thin films were characterized with X-ray diffraction [XRD], field emission scanning electron microscopy [FESEM], energy dispersive analysis of X-rays and UV-visible transmission spectra. The XRD analyses indicate that ZnS films have zinc blende structures with (111) preferential orientation, whereas the diffraction patterns sharpen with the increase in substrate temperatures. The FESEM data also reveal that the films have nano-size grains with a grain size of approximately 69 nm. The films grown at 350°C exhibit a relatively high transmittance of 80% in the visible region, with an energy band gap of 3.79 eV. These results show that ZnS films are suitable for use as the buffer layer of the Cu(In, Ga)Se2 solar cells.  相似文献   

13.
CeO2-x coatings were deposited under variable oxygen flow ratios (%fO2) onto Si substrates by reactive magnetron sputtering. Nanoindentation testing revealed an increase in the hardness, elastic modulus, H/E and H3/E2 ratio with increasing oxygen flow ratio, which in turn increased the adhesion and tribological performance of the coatings. Scratch testing yielded the highest critical load (LC2 = 28.8 N) and CPRS = 103 for the coating deposited with the highest oxygen flow ratio (57 %fO2). Cracking events during scratch testing were initiated by tensile forces behind the scratch stylus, which led to the formation of semi-circular ring cracks. As the normal load increased, transverse cracks emerged extending outwards from the scratch track towards the edge causing the exposure of substrate. Beyond LC2, severe spallation of the CeO2-x coatings led to coating failure. Furthermore, the specific wear rates of the CeO2-x coatings were determined to be within the ~10−15 m3/Nm range influenced by three-body abrasive wear. In-depth analyses from scratch and wear data indicates that these coatings possess good adhesion and durability.  相似文献   

14.
The formation of TiC and Ti phases and their influence on their mechanical properties was studied in this work. Thin layers were deposited by DC magnetron sputtering at room temperature in ultrahigh vacuum from Ti and C targets.Cubic TiC phase (c-TiC) was formed from 58 to 86?at.% Ti content. First formation of hexagonal Ti (h-Ti) occurred from 86?at.% Ti content. The c-TiC disappears from 90?at.% Ti content. Films with 86?at.% Ti content the c-TiC structure can transform to h-Ti by sequential stacking faults. Dominance of c-TiC(111) texture with increasing Ti content was observed.The hardness of thin films agree with structural observations. The highest hardness value (~26?GPa) showed the c-TiC thin film with 67?at% Ti content. The nanohardness values showed decreasing character with increasing Ti content over 70?at.%. The lowest values of nanohardness (~10?GPa) was observed for thin films with only h-Ti phase.  相似文献   

15.
在铁片试样上研究以次磷酸钠为还原剂的化学镀Ni-Fe-Ru-P合金镀层的工艺,考察了金属盐浓度对化学镀反应沉积速率的影响.利用优化的工艺配方在经过敏化,活化处理后的纳米碳纤维表面沉积Ni-Fe-_Ru-P合金镀层,分别利用EDS、XRD、SEM等手段对镀层的成分,结构,形貌进行了表征,并对其进行了热处理.结果表明,利用化学镀技术可以在纳米碳纤维表面获得连续、均匀的Ni-Fe-Ru-P合金镀层,且镀层为非晶态结构.在350℃以下热处理不会改变镀层的结构,在400℃以上热处理,镀层开始晶化.  相似文献   

16.
运用补色原理制备了灰色太阳热反射涂料.采用国军标测试方法GJB 2502.2和美军标测试方法MIL-E-46096C,比较了以不同方法制备的灰色涂料的太阳热反射性能.结果表明,通过补色调制的灰色系涂料的太阳光反射比和隔热性能明显优于普通碳黑调色制备的灰色涂料.  相似文献   

17.
螺旋槽干气密封环端面摩擦试验及其性能分析   总被引:2,自引:0,他引:2  
干气密封环端面在启停阶段和由于制造装配误差等造成非正常运行时存在严重的端面接触摩擦,有必要对干气密封动静环进行摩擦学试验,从而分析并探讨其摩擦学特性。利用端面摩擦磨损试验机,选定合适的工况参数与相应的测试技术对螺旋槽干气密封环进行测试,研究不同工况下的摩擦学特性。结果表明:在特定工况下的试验中,螺旋槽干气密封端面存在明显的磨合现象;当工况从226 N、150 r·min-1增大至1130 N、500 r·min-1时,石墨环磨损量最大增加193.3%,摩擦系数最大降低22.3%,说明石墨环的自润滑性影响密封端面的摩擦性能;由于端面间螺旋槽的存在,石墨环内圈磨损大于外圈。试验结果可为今后端面摩擦学性能的优化提供依据。  相似文献   

18.
电磁屏蔽织物的制备及性能表征   总被引:2,自引:1,他引:2  
采用真空磁控溅射在涤纶织物上镀上金属镍,然后电镀上金属铜和镍。测试了样品的表面电阻、耐磨性、附着力及其在1kHz~40GHz频率范围内的电磁屏蔽性能。结果表明,样品具有良好的导电性、耐磨性和附着力,在30MHz~1.5GHz内的屏蔽效能大于70dB,在1.5GHz~40GHz内的屏蔽效能大于60dB,可以满足各种条件下的电磁屏蔽要求。  相似文献   

19.
《Ceramics International》2016,42(10):12221-12230
The most promising areas of research of new super-hard materials are transition metal borides. These materials are one of the candidates for future superhard layers that will be competitive to DLC and c-BN layers. In this paper MoB-type tungsten boride (WB) layers were examined. WB layers have been deposited by radio frequency magnetron sputtering on Silicon (100), 304 stainless steel (SS 304) and Inconel 601 substrates. Measured thickness of herein prepared layers was about 1 µm, and all studied samples were dense, uniform and smooth. Surface investigation was performed by using an optical profilometer, atomic force microscopy, and scanning electron microscopy. The structure analysis was examined by using X-ray diffractometer (XRD) and transmission electron microscopy (TEM) techniques. Results from the XRD and TEM analysis showed that WB layers were dominated by (101) reflection and indicated a fine grain structure with a grain size of 20–40 nm. The effect of target sputtering power and ambient gas pressure was investigated. The hardness of WB layers deposited on silicon substrate was compared under the load from 1 mN to 5 mN. The hardness of WB layers deposited on SS 304 and Inconel was measured up to 50 mN. All layers of WB revealed excellent hardness exceeding 40 GPa.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号