首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Experimental studies of particle formation from solution droplets were conducted using a newly developed monodisperse spray drying process. Solutes beclomethasone dipropionate and caffeine were dissolved in ethanol, pressurized hydrofluoroalkane propellant 134a, and mixtures thereof. Solutions were atomized into monodisperse microdroplets using a custom droplet generator installed in a laboratory scale spray dryer, enabling drying and collection of the resulting monodisperse microparticles. The effects of droplet diameter, solution concentration, solvent composition, and drying rate on the physical properties of the dried particles were evaluated. Particle morphology and size were assessed using ultramicroscopy and image analysis of micrographs. Extent of crystallinity and polymorphism were investigated using Raman spectroscopy. The drying temperature was found to have a large effect on the morphology of amorphous beclomethasone dipropionate particles. Particles dried near room temperature were spheroidal to ellipsoidal with prevalent surface concavities and evidence of shell buckling; increasing the drying temperature for fixed droplet size and composition resulted in a transition to more spherical, smooth-surfaced particle morphologies. Crystalline caffeine microparticles were made up of assemblies of multiple crystallites. The measured length and breadth of these crystallites was found to be correlated with the time available for crystal nucleation and growth as calculated using a particle formation model. The results highlight the abilities and limitations of currently available particle formation models in elucidating the relationships between the size, composition, and evaporation rate of drying solution droplets and the physical properties of the resulting particles. The work demonstrates the suitability of monodisperse spray drying as an experimental technique for investigating the fundamentals of particle formation from solution droplets.

© 2018 American Association for Aerosol Research  相似文献   


2.
Hard coatings for wear protection of tools, bearings, and sliding parts play an important role in industrial manufacturing. Nanocomposite coatings are being used in this context to improve the mechanical properties. The technology applied therefore is often based on physical vapor deposition (PVD), in which the different materials are co-deposited. In these processes it is not possible to control the properties of the disperse phase and continuous phase independently. Here, we present a technology which combines aerosol technology with thin film technology to produce nanocomposite coatings directly, which gives us full control over both phases. It is based on an upscaled three-stage aerodynamic lens, which allows to bring nanoparticles from an atmospheric-pressure aerosol reactor into a PVD vacuum chamber operating at low pressure (2?Pa). This requires the use of a higher mass flow rate than conventionally used in aerodynamic lenses, so that a rational upscaling strategy for designing an aerodynamic lens for larger mass flow rates is proposed. Here, an array consisting of eight parallel three-stage aerodynamic lenses having each a mass flow rate of 0.6 slm using argon and 0.71 slm using nitrogen is built and optimized, assisted by CFD and numerical trajectory analysis. The transfer efficiency has been investigated numerically and experimentally. It is possible to transfer 80% of the particles with only 1.3% of the gas into the deposition chamber. A number of coatings consisting of titanium carbonitride nanoparticles embedded in a PVD chromium oxynitride film with varying nanoparticle content were produced. Electron microscopy shows the successful incorporation of the nanoparticles in the thin film. A reduction in film crystallite size with increasing nanoparticle content was found. A reverse Hall–Petch behavior was observed.

Copyright © 2019 American Association for Aerosol Research  相似文献   


3.
A new ultrasonic spray pyrolysis method, called carbon nanoparticle-addition ultrasonic spray pyrolysis (CNA-USP), is developed to synthesize nanoparticles of electrolyte material for solid oxide fuel cell applications. In CNA-USP, carbon nanoparticles are added in a precursor solution. First, Gd0.1Ce0.9O1.95 (GDC) particles were synthesized from an aqueous solution of Ce(NO3)3 6H2O and Gd(NO3)3 6H2O by using the CNA-USP method. The resulting synthesized GDC particles were agglomerated, porous, primary particles on the order of 10 nm in diameter. EDX images revealed uniform distributions of Ce, Gd, and O in these porous particles. Then, these agglomerated, porous submicron GDC particles were ground into primary nanoparticles by ball milling for 24 h. The average diameter of the ground GDC nanoparticles was about double of their average crystallite size.

Copyright 2014 American Association for Aerosol Research  相似文献   


4.
Lab-scale soot nanoparticle generators are used by the aerosol research community to study the properties of soot over a broad range of particle size distributions, and number and mass concentrations. In this study, a novel miniature inverted-flame burner is presented and its emitted soot particles were characterized. The burner consisted of two co-annular tubes for fuel and co-flow air and the flame was enclosed by the latter. The fuel used was ethylene. A scanning mobility particle sizer (SMPS) and an aerodynamic aerosol classifier (AAC) were used to measure mobility and aerodynamic size distribution of soot particles, respectively. Particle morphology was studied using transmission electron microscopy (TEM). The elemental carbon (EC) and organic carbon (OC) content of the soot were measured using thermal-optical analysis (TOA). The burner produced soot particles with mobility diameter range of 66–270?nm, aerodynamic diameter range of 56–140?nm, and total concentration range of 2?×?105–1?×?107?cm?3. TEM images showed that most soot particles were sub-micron soot aggregates. Some soot superaggregates, typically larger than 2?µm in length, were observed and their abundance increased with ethylene flow rate. TOA showed that the concentration of EC in the generated soot increased with ethylene flow rate, and the soot was observed to have high EC fraction at high ethylene flow rates. The miniature inverted-flame burner was demonstrated to produce soot nanoparticles over a range of concentrations and sizes with high EC content, making it a practical device to study soot nanoparticle properties in different applications.

Copyright © 2019 American Association for Aerosol Research  相似文献   


5.
6.
Thin films of controlled morphology were fabricated by electrospray drying a colloidal nanoparticle suspension using a conductive and volatile solvent and impacting the nanoparticles on a substrate. Three parameters were used for control: impact velocity, size of the nanoparticles or nanoparticle agglomerates, and solvent volatility. The impact velocity was controlled by charging nanoparticles through electrospray dispersion and varying the electric field driving the particle impaction. It was found that the structure is governed by the relative importance of charged particle drift imposed by the external electric field and the thermal velocity due to Brownian motion. Peclet number correlates with the morphology of the deposit where columnar structures result from high Pe, corresponding to ballistic deposition and porous, fractal-like structures result from small Pe. These patterns match predictions based on Monte Carlo simulations in the literature. For dispersions with higher nanoparticle concentrations, droplet evaporation causes densification of the particle ensemble to form a spherical aggregate that deposits in a predominantly ballistic manner, with smaller aggregates forming denser films. If the droplet evaporation lifetime is altered for the aggregates to be partially wet upon impacting the substrate, the subsequent rapid evaporation of the remaining solvent on the substrate leads to formation of films with high interconnectivity. Films formed by the electrospray technique have large-scale uniformity and their structure is independent of thickness. The interpretation of the observed morphologies in terms of Peclet number and Damkhöler number provides a conceptual framework for a rational design of film structures as required by many applications.

Copyright © 2017 American Association for Aerosol Research  相似文献   


7.
Industrial multistage spray drying systems often have limited in situ process measurements to provide sufficient information for computational fluid dynamics (CFD) simulations of the primary drying chamber. In this case study on the spray dryer at Davis Dairy Plant (South Dakota State University), uncertainties were encountered in specifying the outlet boundary conditions of the spray drying chamber with two outlets: the side outlet and the bottom outlet leading to the second stage external vibrating bed. Using the available data on the vacuum pressure of the chamber, a numerical framework was introduced to approximate suitable outlet boundary conditions for the drying chamber. The procedure involved analyzing the ratio of the airflow rate between the two outlets and using a pseudo-tracer inert particle injection analysis. The goal of this approach was to determine a suitable range of outlet vacuum pressure that will lead to realistic particle movement behaviors during the actual plant operation. The protocol developed here will be a useful tool for CFD modeling of large scale multistage spray drying systems.

Abbreviations: ARC: Australian Research Council; CFD: Computational Fluid Dynamics; FFT: Fast Fourier Transform; MCC: Micellar Casein Concentrate; PRESTO: Pressure Staggering Option; SDSU: South Dakota State University; SIMPLE: Semi???Impilicit Method for Pressure Linked Equations; WPC: Whey Protein Concentrate  相似文献   


8.
The dispersion of dry, cohesive micro- and nanosized powders has wide applications ranging from medical and environmental science to manufacturing technology. Being able to disperse the dry powder at a stable concentration over periods of time (~hour to several hours) is challenging to achieve, which we attempt to address with a novel dry powder dispersion technology. A portable, cost effective and simple dry powder dispersion device that uses ultrasonic energy for continuous feeding of aerosol particles to a de-agglomeration device is developed and tested with commercially available powders. The study is performed using 5?µm polyamide powder and rutile TiO2 powders of 500, 100, and 30?nm mean size of primary particles. The ultrasonic dispersion device proved to be able to disperse all of these powders, which represent low-density material to high-density metal oxides, with stable concentration over periods that extend to an hour. From aerosol measurements to obtain the size distribution of various size particles, it is seen that the highly agglomerated powder particles are not easy to de-agglomerate as we go to the lower (nominal) sized powders because of the stronger inter-particle adhesion forces between nanoparticles compared to microparticles. The scanning electron microscopy (SEM) images of particles in their native powder state and those collected after the dispersion showed significant difference in the agglomeration of the powder particles, which suggests partial success of the turbulent jet de-agglomeration employed.

Copyright © 2019 American Association for Aerosol Research  相似文献   


9.
Understanding transport characteristics of airborne nanotubes and nanofibers is important for assessing their fate in the respiratory system. Typically, diffusion and aerodynamic diameters capture key deposition mechanisms of near-spherical particles such as diffusion and impaction in the submicrometer size range. For nonspherical particles with high aspect ratios, such as aerosolized carbon nanotubes, these diameters can vary widely, requiring their independent measurement. The objective of this study was to develop an approach to provide approximate estimates of aerodynamic- and diffusion-equivalent diameters of airborne carbon nanotubes (CNTs) and carbon nanofibers (CNFs) using their morphological characteristics obtained from electron micrographs. The as-received CNT and CNF materials were aerosolized using different techniques such as dry dispersion and nebulization. Mobility and aerodynamic diameters of test aerosol were directly deduced from tandem measurement of particle mobility and mass. The same test aerosol was mobility-classified and subsequently collected on a microscopy grid for transmission electron microscopy (TEM) analysis. TEM micrographs were used to obtain projected area, maximum projected length, and two-dimensional (2-D) radius of gyration of test particles. Estimates of the aerodynamic diameter and the diffusion diameter were obtained by applying the fractal theory developed for aerosol agglomerates of primary spherical particles. After accounting for the particle dynamic shape factor, estimated aerodynamic diameters agreed with those from the direct measurements (using tandem mobility-mass technique) within 30–40% for the agglomerates with relatively open structures while the diffusion diameters agreed within 40–50%. The uncertainty of these estimates mainly depends on degree of overlapping structures in the microscopy image and nonuniformity in tube diameter. The approach could be useful in calculating approximate airborne properties from microscopy images of CNT and CNF agglomerates with relatively open structures.

This article not subject to US copyright law  相似文献   


10.
An existing differential mobility analyzer (DMA) of cylindrical electrodes and a novel DMA of rectangular plate electrodes are demonstrated for size fractionation of nanoparticles at high-aerosol flow rates in this work. The two DMAs are capable of delivering monodisperse size selected nanoparticles (SMPS σg < 1.1) at gas flow rates ranging from 200 slm to 500 slm. At an aerosol flow rate of 200 slm, the maximum attainable particle mean size is of about 20 nm for the cylindrical DMA and of nearly 50 nm for the rectangular plate DMA. The number concentration of the monodisperse nanoparticles delivered by the high-flow DMAs spans from 104 cm?3 to 106 cm?3 depending upon the particle mean size and particle size dispersion.

Copyright 2014 American Association for Aerosol Research  相似文献   


11.
Cu-Sn binary particles were generated via spray pyrolysis from metal salt precursors with ethylene glycol as the co-solvent and reducing agent. The morphology, crystallinity, and elemental distribution of particles were tunable by changing the reaction temperature, residence time, and quench gas flow rate. Hollow porous particles were fabricated with a higher Sn concentration on the particle surface when the furnace set point was 500°C, while solid particles with a lower surface Sn concentration were generated when the furnace set point was 1000°C. Particles with spherical morphologies were obtained at long residence time conditions (4.5 s). Cu-Sn binary particles with irregular structures (e.g., pores on the particle surface, fragmented spherical particles, and lamellar fragments) were formed at short residence time conditions (0.92 s). A possible spray pyrolysis mechanism was proposed that incorporates chemical reaction steps and structural progression. By this mechanism, the metal salts are believed to sequentially undergo hydrolysis to metal hydroxides, decomposition to metal oxides, reduction to metals, and finally diffusion of Sn into the Cu matrix to generate the Cu-Sn solid solution.

Copyright © 2017 American Association for Aerosol Research  相似文献   


12.
A rectangular slit micro-aerodynamic-lens (μADL) aerosol concentrator operating at atmospheric pressure has been developed. A single stage version has shown concentration ratios of up to 40:1 for 1 μm aerosol particles while particles larger than 2 μm can be concentrated by more than 100:1 in a single stage. The design of this device has been guided by unsteady 3D CFD modeling using detached eddy simulations (DES), and has been validated experimentally using polystyrene spheres and salt crystals of known aerodynamic diameters. The pressure drop in the device does not exceed 1.5 kPa in the major flow and 0.3 kPa in the minor flow at a total flow of 10 slpm.

Copyright 2014 American Association for Aerosol Research  相似文献   


13.
The critical velocity of rebound was determined for spherical ammonium fluorescein particles in the size range of 0.44–7.3 μm. The method was based on measurements with a variable nozzle area impactor (VNAI) and numerical simulations. A comparison to previous results with spherical silver particles obtained with the same method showed that the critical velocity was approximately two orders of magnitude higher for ammonium fluorescein than for silver at the same size range. Among the hard test materials, including steel, aluminium, molybdenum, and Tedlar, the surface material had no significant effect on the critical velocity of rebound within the accuracy of the method. On the contrary, the critical velocity was observed to be highly dependent on the obliquity of the impact at the onset of rebound. While the ratio of the maximum tangential and normal velocities was defined as a measure for the obliquity, the critical velocity was found to be more than a magnitude smaller for very oblique impacts with the velocity ratio above 9 than for close-to-normal impacts with the velocity ratio below 1.5. The results of this study can be considered as a link between the recently published critical velocity results for nanoparticles and the older results for micron-sized particles.

Copyright © 2017 American Association for Aerosol Research  相似文献   


14.
Particles generated from high-temperature processes often attain an aggregate structure, with physical and chemical properties and health impacts dependent on the particles’ size and morphology. A numerical aggregate model is a useful tool to produce well-controlled ceramic particles and to predict the production of particulate air contaminants. Although extensive efforts have been directed at developing accurate and fast-running numerical aerosol codes that can model the formation and growth of aerosol aggregates using the framework of the log-normal (LN) moment method, none developed thus far can account for the bimodal particle size distribution and aggregate morphology simultaneously. In this study, two previous models, a bimodal LN model for spherical particles and a unimodal LN model for fractal aggregates, are extended to fabricate a bimodal LN model for fractal aggregates. By tracing five time-dependent variables for the particle phase, the present model can predict the formation of nucleus particles from a gas precursor and the change in the particle size distribution and morphology. Nucleation, surface growth, intramodal and intermodal coagulation, sintering, and condensational obliteration are taken into account. Numerical experiments performed for validating the new model showed that it is a robust and efficient tool for predicting both aggregate particle size distribution and morphology. The proposed model is expected to be a useful tool for simulating the formation and growth of fractal aggregate particles in multidimensional spatial domains requiring a fast-running aerosol model.

Copyright © 2019 American Association for Aerosol Research  相似文献   


15.
In this study, nanosized (<100 nm) aerosol particles with high mass concentrations for inhalation tests were generated by a spray-drying technique with combining Coulomb explosion and rapid evaporation of the droplets. Under typical spray-drying conditions, aerosol particles with average diameter of 50–150 nm were prepared from a suspension of NiO nanoparticles with a primary diameter of 15–30 nm. Under the Coulomb explosion method, the sprayed droplets were charged by being mixed with unipolar ions to break up the droplets, which resulted in the generation of smaller aerosol particles with diameters of 15–30 nm and high number concentrations. Under the rapid evaporation method, the droplets were heated immediately after being sprayed to avoid inertial impaction on the flow path due to shrinkage of the droplet, which increased the mass concentration of the aerosol particles. The combination of the Coulomb explosion and rapid evaporation of droplets resulted in the generation of aerosol particles with sizes less than 100 nm and mass concentrations greater than 1 mg/m3; these values are often necessary for inhalation tests. The aerosols generated under the combined method exhibited good long-term stability for inhalation tests. The techniques developed in this study were also applied to other metal oxide nanoparticle materials and to fibrous multiwalled carbon nanotubes.

Copyright 2014 American Association for Aerosol Research  相似文献   


16.
This article presents a verification and validation study of the stochastic particle-resolved aerosol model PartMC. Model verification was performed against self-preserving analytical solutions, while for validation three experiments were performed where the size distribution evolution of coagulating ammonium sulfate particles was measured in a cylindrical stainless steel chamber. To compare with the chamber measurements, PartMC was extended to include the representation of fractal particle structure and wall loss. This introduced five unknown parameters to the governing equation, which were determined by a combination of scanning electron microscopy (SEM) analysis and an objective optimization procedure. Excellent agreement between modeled and measured size distributions was achieved using the same set of parameters for all three experiments. Assuming spherical particles led to model results that were inconsistent with the measurements. The best agreement between model and measurement was obtained for the fractal dimension of 2.3, indicating that the non-spherical structure of the particle agglomerates in the chamber needed to be taken into account.

© 2017 American Association for Aerosol Research  相似文献   


17.
Ultrasonic spray pyrolysis method to synthesize porous submicron particles of solid oxide fuel cell (SOFC) electrode materials was developed in which citric acid is added in a precursor solution. This citric acid-addition ultrasonic spray pyrolysis (CA-USP) method was then used to synthesize NiO-Gd0.1Ce0.9O1.95 (GDC) particles for SOFC anodes and La0.8Sr0.2Co3 (LSC) and La0.8Ca0.2MnO3 (LCM) particles for SOFC cathodes. The synthesized particles were submicron-sized, porous, and spherical, and had a sponge-like structure. Energy dispersive X-ray spectrometry images of the synthesized NiO-GDC particles revealed that Ni, Ce, Gd, and O were uniformly distributed within individual particles. NiO-GDC and LCM particles with sponge-like structure were not crushed by a 2-h ball mill grinding test. The formation process of the sponge-like structure was clarified by synthesizing GDC particles at various furnace temperatures between 473 and 1273 K.

Copyright 2014 American Association for Aerosol Research  相似文献   


18.
Pressurized metered dose inhalers (pMDI) produce large numbers of droplets with smaller sizes than 5 μm to treat asthma and other pulmonary diseases. The mechanism responsible for droplet generation from bulk propellant liquid is poorly understood, mainly because the small length scales and short time scales make it difficult to characterize transient spray formation events. This article describes the development and findings of a numerical atomization model to predict droplet size of pharmaceutical propellants from first principles. In this model, the velocity difference between propellant vapor and liquid phase inside spray orifice leads to formation of wave-like instabilities on the liquid surface. Two variants of the aerodynamic atomization model are presented based on assumed liquid precursor geometry: (1) cylindrical jet-shaped liquid ligaments surrounded by vapor annulus; (2) annular liquid film with vapor flow in the core. The growth of instabilities on the liquid precursor surfaces and the size of the subsequently formed droplets are predicted by numerical solutions of dispersion equations. The droplet size predictions were compared with phase doppler anemometry (PDA) data and the predictions were in good agreement with the number mean diameter D10, which is representative of the respirable droplets. The temporal behavior of droplet size production was captured consistently well during the period of the first 95% of the propellant mass emission. The outcome of our modeling activities also suggests that, in addition to saturated vapor pressure of the propellant, its viscosity and surface tension are also key properties that govern pMDI droplet size.

© 2017 American Association for Aerosol Research  相似文献   


19.
Residues of hazardous substances, such as chemical compounds with low vapor pressure, radioactive particles, or biological contamination can remain on surfaces for a prolonged period of time. The fate of these particles partially depends on the aerodynamic resuspension rates from the surfaces that are a function of particle and surface properties as well as the environmental conditions. The aerodynamic resuspension can be used for non-contact surface sampling. The removal rates of microscopic explosive trimethylenetrinitramine (RDX) particles from smooth glass surfaces in a controlled flow environment are investigated in this paper. The shear stress in the flow cell is calculated using computational fluid dynamics as a function of velocity. The RDX particle samples are prepared by dry transfer. Particle sizes and morphologies are measured by 3D scanning electron microscopy (SEM) and optical profilometry. The resuspension rates are calculated based on the changes in the total coverage area before and after exposure to aerodynamic forces. These rates are correlated with wall shear stresses, particle size, and morphology. For non-spherical particles, the removal rates are proportional to the particle shape factor defined as a ratio of particle height to the projected equivalent diameter.

Copyright © 2019 American Association for Aerosol Research  相似文献   


20.
This article presents a cylindrical counter-current flow diffusion denuder with high efficiency penetration of nanoparticles, for non-specific removal of trace gases from an air flow. The denuder was designed to exchange gases in the sample flow by diffusion to the purge flow across a cylindrical microporous glass tube. Laboratory test results indicated that removal efficiencies of gases increased with a lower sample flow rate and a higher sample to purge flow rate ratio. Additionally, the pore size of the microporous glass did not affect gas removal efficiency and particle penetration following optimization of sample and purge flow rate conditions. Significantly high particle penetration was obtained for the counter flow denuder technique (94% penetration for 20 nm of polystyrene latex particle [PSL]) that agreed with theoretical estimation attributed to diffusion loss.

Copyright © 2017 American Association for Aerosol Research  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号